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Figure 1. Magma pretraining pipeline. For all training data, texts are tokenized into tokens, while images and videos from different
domains are encoded by a shared vision encoder. The resulted discrete and continuous tokens are then fed into a LLM to generate the
outputs in verbal, spatial and action types. Our proposed method reconcile the multimodal understanding and action prediction tasks.

A. Pretraining and Finetuning

Setting Pretraining Finetuning
UI Image/Video Real Robot

batch size 1024 32
base learning rate 1e-5 1e-5 1e-5 1e-5
learning rate scheduler Constant Cosine Cosine Constant
training epochs 3 3 1 20
optimizer adamw adamw adamw adamw

Image Resolution 512 768 768 256
Number of Crops 4 or 1 4 4 or 1 1

Table 1. Experimental settings pretraining and finetuning of
Magma models. We maximally use either 32 Nvidia H100s or
64 AMD MI300 GPUs for all training jobs.

We illustrate the pretraining architecture in Fig. 1. It
comprises a vision encoder and a text tokenizer to encode
the visual and text inputs, respectively. We pretrain our
Magma model using a combination of natural images, in-
structional videos, UI navigation and robot manipulation
data. For all the model variants, we use the same train-
ing recipe as shown in Table 1. To handle different im-
age resolutions from different datasets, we also use a multi-
crop strategy to enable batch forward for a given minibatch,
though the ConvNext vision backbone can naturally sup-
port arbitrary resolutions. Specifically, for our pretraining,
we use 512 as the base image size, and resize an input im-
age maximally to 4 crops for UI and image pretraining data,
while use 1 crop for video and robotics data.

For downstream finetuning, we following common prac-
tice to tune the pretrained magma model as shown in Ta-

ble 1 right. As mentioned above, the vision encoder can be
effortlessly adapted to different image resolutions required
for different tasks.

B. Datasets
B.1. Pretraining Data
Due to space constraints, we briefly introduced the datasets
for our pretraining in Sec 4.1 of our main submission. To
ensure the reproducibility of our pretraining stage, we pro-
vide additional details of our pretraining data below.

B.1.1. UI Navigation
Our pretraining data related to UI agent are sourced from
two datasets, SeeClick [7] and Vision2UI [15]. We further
process these source data by adding marks on screenshots
to provide grounded supervisions.
SeeClick. We generally follow the original procedure and
make the following modifications to associate with the Set
of Mark [46] strategy. For each webpage screenshot, multi-
ple (text, bounding box) pairs are available. Therefore, we
directly overlay all the bounding boxes with corresponding
marks on the screenshot. For each mobile screenshot, only a
single (text, bounding box) pair is available in the SeeClick
data. To enrich the pairs, we incorporate additional pairs
from the RICO dataset [9], and employ an OCR tool to ob-
tain text boxes. Finally, we display the enriched bounding
boxes along with their corresponding marks on the mobile
screenshot.
Vision2UI. We consider all bounding boxes whose “con-
tent” property is not null. To prevent the marks from over-



{"from": "user",
"value": "<image>\nFrom this webpage capture, I'll give 
descriptions. Predict each element's bounding box and mark 
index, if present.\nNovember 7, 2013"},
{"from": "assistant",
"value": "Coordinate: (0.27, 0.29, 0.37, 0.30). Mark: 2."},

{"from": "user",
"value": "\"You're Whole\" Summary"},

{"from": "assistant",
"value": "Coordinate: (0.07, 0.31, 0.66, 0.33). Mark: 0."},

...

{"from": "user",
"value": "Analyze the screenshot for input fields and 
provide their bounding box coordinates and mark index if 
they exist."},

{"from": "assistant",
"value": "No input areas found.\n"}

{"from": "user",
"value": "<image>\nI'll provide bounding boxes on this 
webpage screenshot. Please describe the text content 
within each box, adding the mark index when relevant.\n
(0.10, 0.29, 0.13, 0.30)"},

{"from": "assistant",
"value": "Text: News. Mark: 1."},

...

{"from": "user",
"value": "Identify the presence of input fields in the 
provided screenshot and return their click point 
coordinates along with the mark index if applicable."},

{"from": "assistant",
"value": "Coordinate: (0.17, 0.43). Mark: 3.
 Coordinate: (0.31, 0.43). Mark: 4."}

{"from": "user",
"value": "<image>\nOn this 
software's interface, to 
execute the step \"its a 
stopwatch that measures 
time\", where do I direct my 
attention? Please provide 
the coordinate and the 
bounding box's mark index if 
applicable."},

{"from": "assistant",
"value": "Coordinate: 
(0.04, 0.12). Mark: 12"}

{"from": "user",
"value": "<image>\nHow does 
the element at (0.93, 0.41) 
(Mark 0) contribute to the 
overall user experience?"},

{"from": "assistant",
"value": "make selection"}

(a) (b) (c) (d)

{"from": "user",
"value": "<image>\nCould 
you depict the content and 
layout of the screen image 
provided?"},

{"from": "assistant",
"value": "display page 
showing list of items in 
shopping app"}

(e)

Figure 2. Training samples in our Magma-PT-UI. It covers a wide range of action grounding and UI understanding tasks including: (a)
Given the bounding box or point coordinates as the query, assistant should return the natural language description or the content. (b) Given
the natural language or the exact content as the query, assistant should return the value of the bounding box coordinates.. (c) Given the
natural language as the query, assistant should return the value of the point coordinate. (d) Widget captioning. (e) UI summarization.

Source Task Size

SeeClick-Web

text 2 point 271K
text 2 bbox 54K
point 2 text 54K
bbox 2 text 54K

SeeClick-Mobile

text 2 point 274K
text 2 bbox 56K

UI summarization 48K
widget captioning 42K

Visison2UI

input 2 point 980K
input 2 bbox 982K
text 2 point 794K
text 2 bbox 774K
point 2 text 199K
bbox 2 text 193K

Magma-PT-UI (Ours) Mixed 2.8M

Table 2. Statistics of UI related pretraining data.

whelming the main content of the webpage, we sample
bounding boxes with varying probabilities based on their
”type” property. Specifically, we assign a sampling weight
of 0.5 to boxes of type h1, h2, a, button, option, and
nav with 0.5, while other types are weighted at 0.1. Given
the high importance of input areas for interaction, we in-
clude boxes of type input directly without sampling for
mark plotting. After obtaining the elements of high in-
terest, we apply similar tasks as SeeClick [7] to produce
the instruction data, including (a) grounding task, which

involves two forms: predicting center point coordinates
(text 2 point) and predicting bounding box (text 2 bbox);
(b) generating text for elements, categorized into predicting
text based on the coordinates of center points (point 2 text)
or bounding boxes (bbox 2 text); and further introduce the
task of (C) locating input fields, including predicting center
point coordinates (input 2 point) and bounding box coordi-
nates (input 2 bbox) of the input fields.

Given a webpage, since the first two categories of
tasks are grounding or generating texts for the same
group of web elements, we further weight the four sub-
tasks, i.e., (text 2 point), (text 2 bbox), (point 2 text), and
(bbox 2 text) with [0.4, 0.4, 0.1, 0.1], and sample only one
of them to construct the pretraining data. Similarly, we sam-
ple one subtask from (input 2 point) and (input 2 bbox)
with equal probabilities. We merge the sampled subtasks
from the same webpage into one example to improve train-
ing efficiency. We denote the full pretraining data related to
UI by Magma-PT-UI, and list the sizes of individual subsets
in Table 2 and show a few examples in Fig. 2.

B.1.2. Instructional Videos

As mentioned in the main submission, we curate the super-
visions from human instructional videos to learn the agen-
tic capability for our model. To cover different scenarios,
we considered both 3rd point view videos and egocentric
videos. In particular, we start with Epic-Kitchen [8] video
data sets considering that their text annotations are rela-
tively high quality. Afterwards, we expand to Something-
Soomething v2 [34] to include more human-object interac-



Most common verbs in UI navigation Most common verbs in robotic manipulation

Most common verbs in instructional videos
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Figure 3. Action distributions in three types of action-oriented pretraining datasets. (a) UI Navigation; (b) Robotic Manipulation; (c)
Instructional Videos.

tions, and Ego4D [14] and other related instructional videos
for scaling up.

Epic-Kitchen [8]. Epic-Kitchen contains 495 egocentric
videos recorded by 32 participants in kitchen rooms. Each
video contains a number of segments labeled with narra-
tions, start and end frame ids. However, the original video
narrations (e.g., “open door”) are too coarse to depict the
human actions in a certain time frame. For the videos in
Epic-Kitchen, we apply the video preprocessing method as
discussed in Sec 4.2 of our main submission. Concretely,
for each of the original video segments in the dataset, we
run PySceneDetect to detect the temporal boundaries and
split them into sub-segments. During our model pretraining,
the textual annotations are used in two ways. Our model is
asked to predict the detailed description in the first frame.
In addition, they are used as the task description as input to
the model for predicting the traces of marks.

Sth-Sth-v2 [34], Ego4D [14]. The Sth-Sth v2 dataset is
a comprehensive collection of labeled video clips featur-
ing humans performing predefined actions with everyday
objects. The list of action classes spans a wide variety of
atomic actions, including but not limited to “pushing some-

thing from right to left”, “throwing something” and “cov-
ering something with something”. In total, the dataset con-
tains 220,847 seconds-long video clips. To create our pre-
training data, we only leverage the videos in the train and
validation splits. This amounts to around 160K video clips.
We note that we do not use PySceneDetect for Sth-Sth v2
since the original video clips have been highly curated.

The Ego4D dataset is a large-scale egocentric dataset
that contains approximately 3,025 hours of videos. It com-
prises over 3,670 hours of video footage captured from
wearable cameras across a diverse environments and activi-
ties. The dataset spans a wide range of real-world scenarios,
including daily activities and social interactions. Given the
duration of these videos can span over 30 minutes, we lever-
age the original dense caption annotations that are provided
to split each videos into seconds-long segments with con-
sistent views.

Segment and CLIP-score filtering As the point tracking
system works in a short time window, we begin by using
the annotations provided, curated or otherwise, to split each
video into segments, and then run PySceneDetect [4] to fur-
ther break each segment into short video clips with consis-



tent shots. However, the detected video clips may not al-
ways be relevant to their associated text annotations. Thus,
we use the pretrained CLIP [40] visual and text encoders to
compute the cosine similarity score between each clip and
text pair, and filter out clips with < 0.25 scores.
Reliability of CoTracker. To determine the generalizabil-
ity of such traces, we examine the reliability of CoTracker
before running the algorithm on all our pretraining data. We
note that CoTracker was already well validated on multiple
video datasets such as TAP-Vid [11] and PointOdyssey [53]
in the original paper. In this work, we proposed com-
prehensive strategies to handle scene transition and cam-
era motions in videos (Alg. 2 in main paper), which effec-
tively scale to datasets like Ego4D and other instructional
videos (Fig 3). To further validate the reliability of ToM, we
quantitatively evaluated the traces on a subset of YouCook2-
BB [54] with box annotations by humans. We extract the
traces from each annotated box and count the number of fu-
ture traces still falling into the box 1 second forward. On
1320 clips, we got a precision of 0.89, indicating that the
traces reliably capture temporal motions.

B.1.3. Robotic Manipulation
We follow the training recipe in OpenVLA [23] to pre-
pare our pretraining data for robotics manipulation. Specif-
ically, we take the data mixture “siglip-224px+mx-oxe-
magic-soup” as in OpenVLA, which gives us 9.4M image-
language-action triplets, extracted from 326K trajectories,
from 23 separate datasets.

B.1.4. Multimodal Image Understanding
We simply include the 1.2M synthetic image-text pairs in
ShareGPT4V [5] and 665K image instruction tuning data
collected by LLaVA-1.5 [29] as our multimodal image pre-
training data. The former helps our pretrained model to
have a global understanding of visual contents, while the
latter helps to get the model familiar with various types of
human instructions. We denote this dataset by Magma-PT-
Image.

B.1.5. Data Statistics
Given our goal of training a general vision-language-action
foundation model, we analyze the distribution of verbs
present in the text annotations of the UI and robotic manip-
ulation as well as instructional video datasets in Figure 3.
We see that the text annotations in the UI navigation com-
ponent contain many helpful verbs that help guide agents
to achieve a specific task such as “locate” and “turn”. This
is complemented by the more action-oriented words in the
vocabulary of the robot manipulation component, including
“pick”, “push” and “slide”. Such annotations are especially
valuable in helping our Magma model to learn to reason
about interactions with everyday objects. Finally, we also
scale up the amount of training data and diversity of verbs

by including data from instructional videos (Figure 3c). As
evidenced by the relatively high frequency of words such as
“lifting” and “throwing”, such annotations can be very ben-
eficial for gaining a stronger understanding the of temporal
dynamics involved in common activities. More importantly,
the diversity of activities present in these datasets can be
effective at helping the model generalize better to a larger
variety of tasks.

B.2. Downstream Data

B.2.1. UI Agent Navigation

We evaluated the UI grounding and navigation capability
mainly on three datasets, ScreenSpot [7], Mind2Web [10]
and AITW [41].
ScreenSpot is a benchmark used to evaluate the UI action
grounding proposed in [7]. It consists of 600 screenshots
images associated with 1.2K instructions spanning iOS,
Android, macOS, Windows, and web pages. The evalau-
tion covers both text based elements and a variety of wid-
gets and icons. To evaluate the zero-shot action ground-
ing performance for our model, we use OmniParser [31]
to help parse the screenshot and propose actionable re-
gions/icons/buttons. We used the sample code and default
settings provided in the official repo. For these candidate
regions, we overlay numeric marks and ask our model to
pick one.
Mind2Web is first proposed in [10] for text-based web
agent. For fair comparison among vision-based web agent,
we follow the protocol proposed in SeeClick [7]. Given a
webpage, we convert it into a screenshot associated with
ground-truth bounding boxes to which the actions should
be applied. As the original screenshot of the full website
is usually out of the scope of display. We follow a similar
way as in [7] to crop the region of interests centering around
the ground truth boxes, which gives us a local screenshot as
wide as original webpage but with maximal height 1344.
To propose the candidate marks for our model, we directly
exploit the candidate ranks provided in Mind2Web, and use
the top 30 candidates for evaluation.
AITW is a dataset originally collected in [41] for naviga-
tion of the android UI. The original dataset contains up to
715K trajectories, resulting in 5.7M screenshots. In our ex-
periments, to examine the efficient finetuning performance,
we alteratively follow the same protocol in SeeClick [7] and
include a much smaller number of training samples. Specif-
ically, there are 545, 688, 306, 700, 700 instructions from
General/Install/GoogleApps/Single/WebShopping, respec-
tively. 80% of each split is used for training and the re-
mainder is used for evaluation. Instead of finetuning our
model for each category, we jointly finetune our pretrained
Magma on the combined data and evaluate across all cate-
gories using a single model.
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Figure 4. Real robot setup. Magma is deployed on a WidowX 250 robot arm to perform a sequence of kitchen manipulation tasks
including object pick-place and soft manipulation.

B.2.2. Robot Manipulation

Simulator. We employ SimplerEnv [27] as the main
testbed for our learned robot policy. As we do not need
to tune our model on the simulated trajectories, we simply
report the numbers following the protocol proposed in the
original work.
Real-world Setting. We design four tabletop manipulation
tasks for our physical WidowX-250 robot setup as shown
in Fig. 4. As with BridgeData-v2, the RGB image observa-
tions from the robot are captured using a stationary third-
person camera, maintaining a resolution of 256 × 256. For
finetuning our pretrained Magma model, we collect approx-
imately 50 robot demonstration trajectories for each task as
our finetuning dataset. Our experimental design includes
classic soft object manipulation and pick-and-place opera-
tions tasks. Detailed language instructions for the designed
tasks are presented below. For each trial, we randomize the
initial location of the target object and include 2-3 random
distracting objects (e.g., corn, eggplant) in the scene. For
reproducibility, we release the collected robot trajectories.
Tasks included in the finetuning dataset:
• Hot dog assembly: Pick up the hot dog sausage from

the desk and place it into the bun. The trial is counted
as success only when the robot successfully grasps the
sausage and accurately places it within the hot dog bun.

• Mushroom placement: Pick up the mushroom and place
it into the pot. The trial is counted as success only when
the robot correctly grasps the mushroom and places it into
the cooking pot without dropping or misaligning it.

• Cloth pushing: Push the cloth from right to left across
the surface. The trial is counted as success only when the
robot successfully manipulates the cloth in the specified
direction without disturbing other objects on the surface.

Unseen task for evaluating generalization:
• Bidirectional cloth manipulation: Push the cloth in both

directions while maintaining its shape. This task exam-
ines the model’s spatial understanding and reasoning ca-
pabilities, as it requires generalization from unidirectional
pushing in the training data to bidirectional manipulation
in novel scenarios.

Dataset Size Domain

ShareGPT [43] 40K Text
ShareGPT4V [5] 39K General
LLaVA-Instruct [28] 158K General
LAION-GPT4V [25] 11K General
VQAv2 [13] 83K General VQA
GQA [16] 72K General VQA
OKVQA [42] 9K Knowledge VQA
OCRVQA [38] 80K OCR VQA
ChartQA [33] 7K Chart VQA
DVQA [17] 16K Chart VQA
DocVQA [35] 10K Document VQA
AI2D [20] 2K Infographic VQA
SynthDog-EN [22] 20K Document Understanding
A-OKVQA 66K Knowledge VQA
RefCOCO [49] 48K Grounding Desc.
VG [24] 86K Referring Exp.

InfographicsVQA [36] 24k Infographic VQA
ChartQA (Aug) [33] 20k Chart VQA
FigureQA [18] 20k Chart/Figure VQA
TQA [21] 1.5k Textbook VQA
ScienceQA [30] 5k Textbook VQA
Magma-SFT-Image (Ours) 820k Mixed

Table 3. A detailed breakdown of our 820k Magma image in-
struction tuning data used in our multimodal image understanding
experiments shown in Table 5 in our main submission.

B.2.3. Image Instruction Tuning
We show a breakdown of our 820k Magma image in-
struction tuning data in Table 3. As the 760k im-
age instruction tuning data used in LLaVA-1.6 [29] is
not released, we follow their guidance to curate 748k
public available data including ShareGPT [43], LLaVA-
Instruct [28], ShareGPT4V [5], LAION-GPT4V [25],
VQAv2 [12], GQA [16], OKVQA [32], OCRVQA [38],
ChartQA [33], DVQA [17], DocVQA [35], AI2D [20],
SynthDog-EN [22], A-OKVQA [42], RefCOCO [19] and
VG [24]. To complement the claimed “improved reasoning,
OCR and world knowledge”, we resort to a few other open-
sourced datasets including InfoGraphicsVQA [36], aug-
mented ChartQA [33], FigureQA [18], TQA [21] and Sci-
enceQA [30]. We denote the full set by Magma-SFT-Image.



Method Backbone DoM Tree Image General Install GoogleApps Single WebShopping Overall
GPT-4V-SeeAct† [52] GPT-4V [39] ✓ 34.1 39.4 40.0 46.2 38.2 39.6
GPT-4V-ReAct† [47] GPT-4V [39] ✓ 36.2 42.5 46.6 49.1 39.2 42.7
GPT-4V-OmniParser [31] GPT-4V [39] ✓ ✓ 48.3 57.8 51.6 77.4 52.9 57.7

Fuyu-8B‡ Fuyu-8B [2] ✓ - 45.9 40.0 47.2 40.8 -
Fuyu-8B-GUI [6] Fuyu-8B [2] ✓ - 50.9 41.6 45.7 43.8 -
MiniCPM-V‡ MiniCPM-V [48] ✓ - 50.2 45.1 56.2 44.0 -
MiniCPM-V-GUI [6] MiniCPM-V [48] ✓ - 62.3 46.5 67.3 57.5 -
Qwen-VL♮ Qwen-VL [1] ✓ 49.5 59.9 46.9 64.7 50.7 54.3
SeeClick [7] Qwen-VL [1] ✓ 54.0 66.4 54.9 63.5 57.6 59.3
Magma-8B (Ours) LLaMA3 [37] ✓ 61.5 73.2 62.7 77.5 61.7 67.3

Table 4. Efficient finetuning on AITW for mobile UI navigation. We compared models either using DoM tree or image screenshot. We
finetune our Magma jointly and then report the results on individual tasks. † Numbers reported in Zhang et al. [50]. ‡ Numbers reported in
Chen et al. [6]. ♮ Numbers reported in Cheng et al. [7].

Model VQAv2 GQA MME POPE TextVQA ChartQA DocVQA

LLaVA-1.5-7B [26] 76.6 62.6 1510.8 85.9 46.1 18.2 28.1
LLaVA-Next-7B [29] 80.1 64.2 1519.3 86.4 64.9 54.8 74.4

Magma-8B (SFT) 79.5 61.5 1510.1 86.2 67.7 73.0 80.4
Magma-8B (Actw/o) 81.3 63.5 1559.5 86.1 69.8 71.0 84.1
Magma-8B (Fullw/o) 81.3 62.9 1576.0 86.3 69.6 71.7 83.8
Magma-8B (Full) 81.4 64.0 1588.7 86.3 70.2 76.2 84.8

Table 5. Finetuned performance on multimodal image under-
standing tasks. Pretraining on full set with SoM and ToM (last
row) attains the overall best performance compared with our own
baselines and counterparts of the same model class.

B.2.4. Video Instruction Tuning

For comparisons with state-of-the-art video LMMs, we
adopt the LLaVA-Video-178K dataset [51] for instruction
tuning. It consists of approximately 1.6M video and text
instruction samples from 178K videos. The dataset is
compiled from multiple video sources ranging from Cha-
rades [44], Sth-SthV2 [34] to Kinetics-700 [3]. We refer
interested readers to the original papers for more details.

B.2.5. Details about SoM for training and evaluation

we exploit three ways to extract the candidate bounding
boxes for the SoM prompt:
• DOM Tree. In addition to the bounding boxes extracted

from HTML code [7, 15], we further annotate the mobile
screenshots in SeeClick data with bounding boxes derived
from Android view hierarchies [45]. These annotations
are used during our model pretraining.

• Vision model. For zero-shot evaluation on
Screenspot [7], we exploit the OmniParser model [31]
to make a fair comparison with the state-of-the-art
methods [7, 31]. Note that we only use the bounding
boxes without local semantics. The original bounding
boxes in AITW [41] are identified using an OCR model
and IconNet [45].

• Language model. For evaluation on As discussed
earlier, we directly apply the predictions provided by
Mind2Web [10] using a pretrained language model
DeBERTa-v3-base. This model gives approximately 85%
recall@50.

Figure 5. Few-shot finetuning results on the LIBERO simula-
tion benchmark, using 10 trajectories per task for fine-tuning.

C. Additional Quantitative Analysis
Efficient finetuning on AITW. We report the results for
different models on AITW for UI navigation on mobile in
Table. 4. Similarly to the trend on Mind2Web, our Magma
model outperforms the SOTA method by a large margin in
the five task domains.

Image instruction tuning. To further assess Magma’s
multimodal understanding capability, we conduct continu-
ous finetuning on our Magma-SFT-820K data. Then, we
compare the finetuned Magma model with existing VLMs
on a suite of commonly used image reasoning benchmarks,
e.g. MME and GQA. As shown in Table 5, Magma out-
performs recently-proposed VLMs on most of the tasks,
with notable gains of ∼5% and ∼22% on TextVQA and
ChartQA, respectively. Similarly to our observations in spa-
tial evaluation results shown in our main paper, our abla-
tion study highlights the effectiveness of using SoM and
ToM for pre-training, which leads to ∼ 5% improvement
in ChartQA.

Efficient finetuning on LIBERO. The efficient adap-
tation (via finetuning) capability of Magma is further
validated through few-shot finetuning evaluations on the
LIBERO benchmark. For each task suite in the benchmark,
we sample only 10 trajectories for finetuning. During the



Task #1: What’s the weather like in Tokyo

{"TAP": {“Coordinate": [0.54, 0.88]}} {"TYPE": "What's the weather like in Tokyo"} {“NAVIGATE": "ENTER"} {"SET_TASK_STATUS": "COMPLETE"}

Task #2: install app “Instagram”

{"TAP": {"MARK": 0}} {"TAP": {"MARK": 11}}{"TAP": {"MARK": 1}} {"TAP": {"MARK": 0}} {"TYPE": "Instagram"} {"TAP": {"MARK": 11}} {"SET_TASK_STATUS": "COMPLETE"}

Instruction Template

<image>
Imagine you are interacting with an Android device step by step. You can see the
screen and know the previous actions through recorded history. The screenshots are
labeled with bounding boxes and numeric marks to guide your interactions. Your task
is to determine the next action to perform. The possible actions include tapping,
swiping, navigating, typing, or setting the task status.

Use the following format for your output, selecting the appropriate key-value pair:
```json
{

"TAP": dict, // Use {"MARK": mark_index} where `mark_index` is an integer cor-
responding to the bounding box on the screen, or {"NORMALIZED_COORDINATE": [y, x]}
where `y` and `x` are float numbers between 0 and 1 representing the normalized co-
ordinates on the screen.

"SWIPE": str, // Choose "UP", "DOWN", "LEFT", or "RIGHT"
"NAVIGATE": str, // Choose "BACK", "HOME", or "ENTER"
"TYPE": str, // The text to be typed
"SET_TASK_STATUS": str, // Choose "COMPLETE" or "IMPOSSIBLE"

}
```

Current task: <current_task>

Previous actions:
<action_history>

Determine your next action (Step <step_idx>) and provide the output in the speci-
fied dictionary format.

Figure 6. Examples for mobile UI navigation sample. We prompt the model with two tasks: “What’s the weather like in Tokyo” and
“Install app ‘Instagram’”. The model take actions sequentially given the new observation and history action information.

evaluation, we perform 100 trials per task suite. The re-
sults, shown in Fig. 5, indicate that Magma achieves a sig-
nificantly higher average success rate in all task suites. Ad-
ditionally, removing SoM and ToM during pretraining has
a negative impact on model performance, underscoring the
effectiveness of our pretraining method.

D. Qualitative Analysis
D.1. UI Navigation
Given the performant UI navigation performance across dif-
ferent tasks, we show some Mobile UI navigation samples
in Fig. 6. We prompt the model to complete two daily
tasks starting from the home page: “What’s the weather like
in Tokyo” and “Install app ‘Instagram’”. Despite that our
model is never trained with the full trajectory, it can handle
the tasks in the wild pretty well.

D.2. Robotics Manipulation
We further show the real robot manipulation rollout for
OpenVLA and Magma model. As discussed in our main
paper, our model exhibits much better generalization abil-

ity to different real robot manipulation tasks. In Fig. 7, we
qualitatively show how two models handle a complicated
task of “Pick up the sausage and put it inside the hotdog”.
Thanks to the proposed pretraining techniques, our Magma
model can not only precisely pick up the sausage but also
move smoothly to the top of the hotdog, demonstrating su-
perior spatial understanding and reasoning capability com-
pared with the counterpart.

E. Social Impacts

To develop a foundation model with both verbal and spa-
tial intelligence capable of handling diverse agentic tasks in
digital and physical environments, we curated a comprehen-
sive pretraining dataset from a wide range of image, video,
and robotics domains:
• UI navigation data. We leverage two pretraining datasets

SeeClick and Vision2UI.
• Instructional videos. As our goal was to learn an

agentic model that can undertake daily tasks like hu-
mans, we compile the videos from Epic Kitchen, Ego4d,
Something-Something v2 and other instructional videos.



(a) Robot policy rollout for task “Put the sausage to hotdog” for OpenVLA model. (Failure)

(b) Robot policy rollout for task “Pick up the mushroom to the pot” for OpenVLA model. (Failure)

(c) Robot policy rollout for task “Put the sausage to hotdog” for Magma model. (Success)

(d) Robot policy rollout for task “Pick up the mushroom to the pot” for Magma model. (Success)

Figure 7. Comparison between OpenVLA (top two rows) and Magma (bottom two rows) for real robot manipulation task. The
two robot policies starts with the same initial stage and asked to perform exactly the same task. The whole task requires precise spatial
understanding and planning for the model. For both tasks, OpenVLA failed to accomplish while our model successfully handle.

• Robotics manipulation data. For robotics task, we fol-
low OpenVLA to leverage the robotics data in Open-X-
Embodiment.

• Multimodal understanding data. Lastly, we include a
small set of multi modal pretraining data ShareGPT4V,
and instruction tuning data LLaVA-1.5 plus a number of
other domain-specific data to retain the generic multi-
modal understanding capability of the pre-trained model.
The data markup of the robotics and UI navigation data is

fairly standardized focusing on generic manipulation tasks
(“Place x object on y object”) and generic UI navigation

tasks (“Click search button”). We, however, performed a
detailed data reflection exercise on the video data of people
performing certain tasks. The core inferences we took from
these videos were the trajectory of objects over time when
the tasks were performed.

We note that the distribution of identities and activities in
the instructional videos are not representative of the global
human population and the diversity in society. We are cog-
nizant of the unintended societal, gender, racial and other
biases in training with these data, so we will ensure re-
quired disclaimers are in place when publishing the models.



The training dataset, task list and descriptions focus on the
next action to perform only – not describe, act on, or per-
form any analysis on the subject itself. While there can be
unintended outputs from the model based on adverse task
descriptions, we will ensure to highlight the use cases the
model was trained for and its intended use.

Responsible AI. It is important to note that the model
is specifically designed for UI navigation in a controlled
Web UI and Android simulator, and robotic manipulation
tasks and should not be broadly applied to other tasks. The
recommended usage is within the settings they were trained
on, namely, an enclosure equipped with a robotic arm and
everyday objects for robotic manipulation and an android
simulator running on a computer for UI manipulation. For
UI navigation task, researchers should make sure that a
human is in the loop and in control for every action the
agentic system generates. Since the model cannot act by
itself, the sub-module a researcher uses to actually perform
the UI navigation action should ensure that no unintended
consequences can occur as a result of performing the
UI action proposed by the model. The model by itself
demonstrates good-enough capability in UI navigation and
robotic manipulation, but is not usable as is for exploita-
tion scenarios. A threat actor, can however use specific
training data for a specific malicious task, to leverage
the model as a base to perform automated UI navigation.
This is a generic risk associated with the agentic models.
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