
MatAnyone: Stable Video Matting with Consistent Memory Propagation

— Supplementary Materials —

In this supplementary material, we provide additional discussions and results to supplement the main paper. In Section A,
we present the network details of our MatAnyone. In Section B, we discuss more training details, including training sched-
ules, training augmentations, and loss functions. In Section C, we provide more details on our new training and testing
datasets, including the generation pipeline and some examples for demonstration. We present comprehensive results in Sec-
tion D to further show our performance, including those for ablation studies and qualitative comparisons. It is noteworthy
that we also include a demo video (Section D.6) to showcase a Hugging Face demo and additional results on real-world
cases in video format.
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A. Architecture
A.1. Network Designs

As illustrated in Fig. 3 in the main paper, our MatAnyone mainly has five important components: (1) an encoder for key and
query transformation, (2) a consistent memory propagation module for pixel memory readout, (3) an object transformer [3]
for memory grouping by object-level semantics, (4) a decoder for alpha matte decoding, (5) a value encoder for alpha matte
encoding, which is used to update the alpha memory bank.
Encoder. We adopt ResNet-50 [5] for encoder following common practices in memory-based VOS [1–3]. Discarding the
last convolution stage, we take ×16 downsampled feature as F t for key and query transformation, while features at scales
×8, ×4, ×2, and ×1 are used as skip connections for the decoder.
Consistent Memory Propagation. The process of consistent memory propagation is detailed in Fig. 3(b) in the main paper.
Alpha memory bank serves as the main working memory for past information query as in [1, 3], which is updated every rth

frame across the whole time span. The query of the current frame to the alpha memory bank is implemented in an attention
manner following [1, 3]. For the query QHW×C 1 and alpha memory bank KTHW×C , V THW×Cv 2, the affinity matrix
A ∈ [0, 1]HW×THW of the query to alpha memory is computed as:

Aij =
exp(d(Qi,Kj))∑
z exp(d(Qi,Kz))

, (1)

where d(·, ·) is the anisotropic L2 function, H and W are the height and width at ×16 downsampled input scale, and T is
the number of memory frames stored in alpha memory bank. The queried values V m

t in Fig. 3(b) in the main manuscript is
obtained as:

V m
t = AVm. (2)

In addition to that, we also maintain last frame memory solely for the uncertainty prediction module we propose, and it is
updated every frame. The boundary-area prediction module is lightweight with one 1 × 1 convolution and two 3 × 3
convolutions. By taking the input of a concatenation of current frame feature Kt, last frame feature Kt−1, and last alpha
matte prediction Mt−1, it outputs a one-channel change probability mask Ut of each query token, where higher Ut indicates
such token is likely to change more in the alpha value compared with Mt−1. As mentioned in Sec. 3.1 in the manuscript, the
ground truth Ut label is obtained by: UGT

t : |MGT
t−1 −MGT

t | >= δ, where δ is set at 0 for segmentation data, and 0.001 for
matting data as noise tolerance. Since Ut is predicted at a ×16 downsampled scale in the memory space, the ground truth
mask UGT

t is also downsampled in the mode of area.
Object Transformer. Our object transformer is derived from Cutie [3] with three consecutive object transformer blocks.
Pixel memory readout P t obtained from the consistent memory propagation module is then grouped through several attention
layers and feed-forward networks. In this way, the noise brought by low-level pixel matching could be effectively reduced
for a more robust matching against distractors. We do not claim contributions for this module.
Decoder. Our decoder is inspired by common practices in VOS [1, 3] with modified designs specifically for the matting tasks.
The mask decoder is VOS generally consists of two interactive upsampling from ×16 to ×4, and then a bilinear interpolation
is applied to the input scale. However, since the boundary region for an alpha matte requires much more precision than
a segmentation mask, we enrich the decoder with two more upsampling layers until ×1, where skip connections from the
encoder are applied at each scale to enhance the boundary precision.
Value Encoder. Similar to the encoder, we adopt ResNet-18 [5] for value encoder following common practices in memory-
based VOS [1–3]. Different from the encoder for key and query, the value encoder takes the predicted alpha matte M t as well
as the image features as input, the encoded values are then used to update the alpha memory bank and last frame memory
according to their updating rules.

B. Training
B.1. Training Schedules

Stage 1. To initialize our model on memory propagation learning, we train with our new video matting data VM800, which
is of larger scale, higher quality, and better diversity than VideoMatte240K [12]. We use the AdamW [15] optimizer with a
learning rate of 1 × 10−4 with a weight decay 0.001. The batch size is set to 16. We train with a short sequence length of

1We ignore the subscript t in Qt for simplicity
2We ignore the subscript m in Km and Vm for simplicity



Table A. Training settings and losses used in different training stages. † indicates that segmentation loss is computed as an auxiliary loss
on a segmentation head, which will be abandoned during inference. Other than that, matting loss and core supervision loss are computed
on the matting head for semantic stability in core regions and matting details in the boundary region.

Training Stage #Iterations Matting Data Segmentation Data Sequence Length Matting Loss Segmentation Loss† Core Supervision Loss

Stage 1 85K video image & video 3 (80K) → 8 (5K) ✓ ✓

Stage 2 40K video image & video 8 ✓ ✓ ✓

Stage 3 5K image image & video 8 ✓ ✓ ✓

3 for 80K first, and then we train with a longer sequence length of 8 for another 5K for more complex scenarios. Video and
image segmentation data COCO [14], SPD [17] and YouTubeVIS [18] are used to train the segmentation head parallel to the
matting head at the same time, as previous practices [7, 11, 13].
Stage 2. We apply our key training strategy - core-area supervision in this stage. On the basis of the previous stage, we add
additional supervision on the matting head with segmentation data to enhance the semantics robustness and generalizability
towards real cases. In this stage, the learning rate is set to be 1× 10−5, and we train with a sequence length of 8 for 40K for
both matting and segmentation data.
Stage 3. Due to the inferior quality of video matting data compared with image matting data annotated by humans, we
finetune our model with image matting data instead for 5K with a 1 × 10−6 learning rate. Noticeable improvements in
matting details, especially among boundary regions, could be seen after this stage.

B.2. Training Augmentations

Augmentations for Training Data. As discussed in the manuscript, video matting data are deficient in quantity and diversity.
In order to enhance training data variety during the composition process, we follow RVM [13] to apply motion (e.g., affine
translation, scale, rotation, etc.) and temporal (e.g., clip reversal, speed changes, etc.) augmentations to both foreground
and background videos. Motion augmentations applied to image data also serve to synthesize video sequences from images,
making it possible to fine-tune with higher-quality image data for details.
Augmentations for Given Mask. Since our setting is to receive the segmentation mask for the first frame and make alpha
matte prediction for all the frames including the first one, it is important to have our model robust to the given mask. To
generate the given mask in the training pipeline, we first obtain the original given mask. For segmentation data, it is just the
ground truth (GT) for the first frame, while for matting data, it is the binarization result on the first-frame GT alpha matte,
with a threshold of 50. Erosion or dilation is then applied with a probability of 40% each, with kernel sizes ranging from 1
to 5. In this way, we force the model to learn alpha predictions based on an inaccurate segmentation mask, also enhancing
the model robustness towards memory readout if it is not so accurate during the predictions in following frames.
Augmentations for Assigned Object(s). The assignment of target object(s) as a segmentation mask for the first frame gives
us flexibility for instance video matting. Given the strong prior, the model is still easy to be confused by other salient humans
not assigned as target. To solve this, we find that a small modification in the video segmentation data pipeline has an obvious
effect. In YouTubeVIS [18], for each video with human existence, suppose the number of human instances is H . Instead of
combining all of them as one object (practice in previous auxiliary-free methods [13]), we randomly take h ≤ H instance as
foreground, while unchosen instances are marked as background. In this way, we force the model to distinguish the target
human object(s) even when other salient human object(s) exist, enhancing the robustness in object tracking for instance video
matting even without instance mask for each frame as MaGGIe [8] has.

B.3. Loss Functions

Given that we take the first-frame segmentation mask alongside with input frames as input, our model needs to predict alpha
matte starting from the first frame, which is different from VOS methods [1, 3]. In addition, since we also apply mask
augmentation on the given segmentation mask, the prediction from the segmentation head should also start from the first
frame. As a result, we need to apply losses on all t ∈ [0, N ] frames for both matting and segmentation heads.

There are mainly three kinds of losses involved in our training: (1) matting loss Lmat; (2) segmentation loss Lseg; (3)
core supervision (CS) loss Lcs, and their usages in different training stages are summarized in Table A.
Matting Loss. For frame t, suppose we have the predicted alpha matte Mt w.r.t. its ground-truth (GT) MGT

t . We follow
RVM [13] to employ L1 loss for semantics Ll1, pyramid Laplacian loss [6] for matting details Llap, and temporal coherence
loss [16] Ltc for flickering reduction:

Ll1 = ∥Mt −MGT
t ∥1, (3)



Llap =

5∑
s=1

2s−1

5
∥Ls

pyr(Mt)− Ls
pyr(M

GT
t )∥1, (4)

Ltc = ∥dMt

dt
− dMGT

t

dt
∥2, (5)

The overall matting loss is summarized as:
Lmat = Ll1 + 5Llap + Ltc. (6)

Segmentation Loss. For frame t, suppose we have the predicted segmentation mask St w.r.t. its ground-truth (GT) SGT
t

from the segmentation head. We employ common losses used in VOS [1, 3, 19], Lce and Ldice.

Lce = SGT
t (−log(St)) + (1− SGT

t )(−log(1− St)), (7)

Ldice = 1− 2StS
GT
t + 1

St + SGT
t + 1

. (8)

The overall segmentation loss is summarized as:

Lseg = Lce + Ldice. (9)

Core Supervision Loss. For core-area supervision, we combine the region-specific losses: Lcore for core region and
Lboundary for boundary region as defined in ?? in the manuscript, and the overall core supervision loss is summarized
as:

Lcs = Lcore + 1.5Lboundary. (10)

C. Dataset

Table B. Comparison on Datasets. We compare our new training data and testing data with the old ones, in terms of the number of distinct
foregrounds, sources, and whether harmonization is applied.

Datesets VideoMatte240K (old train) [12] VM800 (new train) VideoMatte (old test) [12] YouTubeMatte (new test)

#Foregrounds 475 826 5 32
Sources - Storyblocks, Envato Elements, Motion Array - YouTube
Harmonized - - x ✓

C.1. New Training Dataset - VM800

Overview. As summarized in Table B, our new training dataset VM800 has almost twice the number of foreground videos
than VideoMatte240K [12] in quantity. To enhance diversity and data distribution, our foreground green screen videos are
downloaded from a total of three video footage websites: Storyblocks, Envato Elements, and Motion Array, and thus enjoy
a diversity in hairstyles, outfits, and motion. In addition, we ensure the high quality of our VM800 dataset in fine detail and
through careful manual selection.
Generation Pipeline. We employ Adobe After Effects in our data generation pipeline to extract alpha channels from green
screen footage videos. Since the amount of green screen footage to be processed is huge, we would like to obtain the
preliminary results with an automatic pipeline. We first use Keylight and set Screen Color to be the pixel value taken
from the upper left corner for each frame. To obtain a clean alpha matte, we clip the values smaller than 20 to be 0 and those
larger than 80 to be 255. To further enhance the alpha matte quality, we post-process with another two keying effects Key
Cleaner and Advanced Spill Supressor, which are generally used together following Keylight. Since we are
processing a video, we also turn on reduce chatter in Key Cleaner to reduce flickering in the boundary region. For
batch processing, we compile the above process into a Javascript and XML file for After Effects to run with, and obtain a
large batch of preliminary results for manual selection.



Keylight
- Screen Color: pixel value of upper left corner
- Screen Matte:

- Clip Black: 20
- Clip White: 80

Key Cleaner
- radius: 1
- reduce chatter: check

Advanced Spill Supressor

(a) Errors in reflective regions (e.g., glasses) (b) Inhomogeneous in core regions (e.g., shadow) 

Figure A. Issues with VideoMatte240K [12]. (a) Errors in alpha values exist in reflective regions (e.g., “a hole” on glasses). (b) Inhomo-
geneous alpha values exist in core regions (e.g., caused by shadow), where the alpha value should be exactly 0 or 1.

(a) Errors in reflective regions (e.g., glasses) (b) Inhomogeneous in core regions (e.g., shadow) 

Figure B. Gallery for our new training dataset VM800. High-quality details in the boundary regions and diversity in terms of gender,
hairstyles, and aspect ratios could be clearly observed.

Quality - Fine Details. The green screen foreground videos we downloaded are almost in a 4K quality, and we also place
a higher priority on those videos with more details (e.g., hair) in our download choice. Fig. B shows the fine details in our
VM800 dataset.
Quality - Careful Manual Selection. We notice that alpha mattes extracted with After Effects from green screen videos
often encounter inhomogeneities in core regions. For example, reflective regions in the foreground will result in a near-zero
value (i.e., a hole) in the alpha matte, as shown in Fig. A(a). In addition, noise also exists in the green screen background,



resulting in the fact the alpha values may not homogeneously equal 0, which should not be the case in the core region.
Similarly, for foregrounds, colors that are similar to the background green, or shadow in the foreground, may also result in
the alpha values not homogeneously equal to 1 in the core foreground region, making the alpha matte look noisy, as shown
in Fig. A(b). Since VideoMatte240K [12] is also obtained with After Effects, we observe that alpha mattes with the above
problems still exist, and thus taking such wrong ground truth for training will inevitably lead to problematic inference results
(Fig. D(a)). As a result, we conduct careful manual selection to examine all our processed alpha mattes, and leave out those
with the above problems. As shown in Fig. D(a), training with our VM800 will not lead to such problematic results.

C.2. New Test Dataset - YouTubeMatte

Overview. As summarized in Table B, our new synthetic benchmark YouTubeMatte has over six times larger than the number
of distinct foreground videos in VideoMatte [12], making it a much more representative benchmark for evaluation with better
diversity. In addition, the green screen videos for foregrounds are downloaded from YouTube at a scale of 1920 × 1080
with rich boundary details, thus enhancing its ability to discern matting precision in boundary regions. While the generation
pipeline for YouTubeMatte is almost the same as that for VM800, harmonization [9], however, is applied when compositing
the foreground on a background. Such an operation effectively makes YouTubeMatte a more challenging benchmark that is
closer to the real distribution. As shown in Fig. C, while RVM [13] is confused by the harmonized frame, our method still
yields robust performance.

Before
A
fter

Video Frame RVM Ours

H
arm

onization

Figure C. Harmonization on synthetic benchmarks and its effect on model performance. Harmonization [9] is an operation that makes
the composited frame more natural and realistic, which also effectively makes our YouTubeMatte a more challenging benchmark that is
closer to the real distribution. It is observed that while RVM [13] is confused by the harmonized frame, our method still yields robust
performance.

C.3. Real Benchmark and Evaluation

Overview. As a technique towards real-world applications (e.g., virtual background in the online meeting), the synthetic
benchmark is not enough to test the generalizability of video matting models. Although there are countless of real human
videos for testing in the wild, the lack of GT alpha mattes makes them hard to serve as a real benchmark. Here, we select
a subset of 25 real-world videos from [13], where a consecutive of 100 frames for each video are selected with no scene
transition, to form our real benchmark. According to our definitions in Fig. 2(a) in the manuscript, we could also divide the
evaluation metrics for core regions and for boundary separately, making evaluation for real benchmarks feasible.
Evaluation on Core Regions. Thanks to the recent success of VOS methods [1, 3], frame-wise segmentation masks could be
generated with high precision. Here, we employ Cutie [3] for video segmentation results. We first obtain the trimap for each
segmentation mask by applying dilation and erosion (with kernel size 21), and then compute the core mask where trimap
values equal 0 or 1. In this way, the values of a segmentation mask within its core region could be considered as the GT



alpha values for the core region, where common metrics including MAD and MSE for semantic accuracy, and dtSSD [4] for
temporal coherency could be applied for evaluation.

D. More Results
D.1. Enhancement from New Training Data

As discussed in Sec. 4.1 in the manuscript and Section C.1 in the supplementary, our new training data VM800 is upgraded
in quantity, quality, and diversity. In addition to the quantitative evaluation in Table 3 in the manuscript, we further show the
enhancement from new training data by providing more results when comparing the model trained with VideoMatte240K [12]
and the model trained with our VM800 in Fig. D(a).

Errors in 
reflective objects

Inhomogeneous 
core regions

Video Frame Old Training Data New Training Data Video Frame w/o Core Supervision w/ Core Supervision 

(a) Enhancement from New Training Data (b) Effectiveness of New Training Scheme

Figure D. (a) Comparison on results trained with old training data (VideoMatte240K [12]) and new training data (our VM800). It
could be observed that training with old data will lead to errors in reflective objects (e.g., holes on the sunglasses) and inhomogeneous alpha
values in the core regions. However, both issues are fixed when training with our new data, indicating a higher quality. (b) Comparison
on results trained without and with core-area supervision. It could be observed that training without it will lead to semantics error due
to the weak supervision from real segmentation data, while training with core supervision largely improves semantics accuracy thanks to
the stronger supervision enabled.

D.2. Effectiveness of Consistent Memory Propagation

As one of our key designs, the consistent memory propagation (CMP) module improves both stability in core regions and
quality in boundary details. In addition to the quantitative evaluation in Table 3 in the manuscript, we give more qualitative
results and analysis in Fig. E.

D.3. Effectiveness of New Training Scheme

Our new training scheme introduces core-area supervision, which largely enhances the semantic accuracy and stability, as
shown in Table 3 in the manuscript. More qualitative results are shown in Fig. D(b) for better visualization of its effects.

D.4. Effectiveness of Recurrent Refinement

As discussed in Sec. 3.3 in the manuscript, the sequential prediction in the memory-based paradigm enables recurrent refine-
ment without the need for retraining during inference. By repeating the first frame n times and iteratively updating the first
frame prediction based on the last-time prediction, the quality of the first frame alpha matte could be recurrently refined. We
show in Fig. F that such recurrent refinement can not only (1) enhance the robustness to the given segmentation mask even
when it is of low quality, but also (2) achieve matting details at an image-matting level when compared with an image matting
method (i.e., Matte Anything [20] in the last column).
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Figure E. Comparison on results with and without Consistent Memory Propagation. It could be observed that when CMP is not
applied, semantic errors constantly exist across a wide span of video frames. However, when training with CMP, we observe from the
“Change Probability” mask that usually our model only takes pixels near the boundary as “changed”, and most of the inner regions (i.e.,
earring) will mainly take the memory values from the last frame. As we can see on the figure, while predictions are both correct at time
t, the model with CMP successfully keeps the correctness and gives stable results, while the model without CMP quickly breaks the
correctness and never recovers.

D.5. More Qualitative Comparisons

In this subsection, we provide additional visual comparisons of our method with the state-of-the-art methods, including
auxiliary-free (AF) method: RVM [13] and mask-guided methods: FTP-VM [7], and MaGGIe [8]. Fig. G presents the
general video matting results on real videos. To further demonstrate the superiority of our model, Fig. H and Fig. I both
showcase a challenging case respectively, where other methods mostly fail. In addition, Fig. J demonstrates the instance
matting results compared with MaGGIe [8], a method with instance mask for each frame is given as guidance, while our
model only has the segmentation mask for the first frame as guidance.

D.6. Demo Video

We also offer a demo video. This video showcases more video matting results and a hugging face demo for applicability,
both on real-world videos.

https://www.youtube.com/watch?v=oih0Zk-UW18


Video Frame Segmentation Mask !! = 1 !! = 5 !! = 10 Image Matting 
(Matte Anything)

Figure F. Comparison on results with iterative refinement. A noticeable enhancement on details can be observed even with one iteration
of refinement compared with the given segmentation mask. Within 10 iterations, our model is able to achieve matting details at an image-
matting level, even better than Matte Anything [20], which is an image matting model also based on the results from SAM [10].



Video Frame RVM FTP-VM MaGGIe Ours

Figure G. More qualitative comparisons on general video matting with SOTA methods. We compare our MatAnyone with both
auxiliary-free (AF) method: RVM [13] and mask-guided methods: FTP-VM [7], and MaGGIe [8]. It could be observed that our method
significantly outperforms others in both detail extraction and semantic accuracy, across diverse and complex real scenarios. It is noteworthy
that although sometimes MaGGIe [8] seems to give acceptable results when compositing with a green screen, its alpha matte turns out
to be noisy (i.e., inhomogeneous in the core foreground region and blurry in the boundary region), while our alpha matte is clean with
fine-grained details in the boundary region. As a result, we also include alpha mattes for a more comprehensive comparison. (Zoom in for
best view)
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Figure H. A challenging example of general video matting across a long time span. We compare our MatAnyone with both auxiliary-
free (AF) method: RVM [13] and mask-guided methods: FTP-VM [7], and MaGGIe [8]. It could be observed that our model is able to
track the target object stably even when the object is moving fast in a highly complex scene, where all the other methods present noticeable
failures. (Zoom in for best view)
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Figure I. Another challenging example of general video matting across a long time span. We compare our MatAnyone with both
auxiliary-free (AF) method: RVM [13] and mask-guided methods: FTP-VM [7], and MaGGIe [8]. This example showcases that our model
is able to track the target objects even in a highly ambiguous background, where the colors for foreground and background are similar, and
also multiple humans in the background. In addition, it also demonstrates when there is more than one target object, our model is still able
to handle this challenging case well. (Zoom in for best view)

#1
#2

#1
#2

#1

#2

#3

Instance #1 Instance #2 Instance #3Video FrameMaGGIe (#1) MaGGIe (#2)Video Frame Ours (#1) Ours (#2)

M
aG
G
Ie

O
urs

Figure J. More qualitative comparisons on instance matting. We compare our MatAnyone with MaGGIe [8], a mask-guided method
that requires the instance mask for each frame, while our method only requires the mask for the first frame. It could be observed that even
with such strong given prior, MaGGIe still performs below our method in terms of semantic accuracy in the core regions. Moreover, in
terms of the boundary regions, by examining the details there, we could clearly observe that the details generated by MaGGIe are blurry
and far from fine-grained compared with our results. (Zoom in for best view)
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