NADER: Neural Architecture Design via Multi-Agent Collaboration

Supplementary Material

S1. Detailed Experimental Setting

S1.1. Macro Skeleton

When conducting experiments on CIFAR10, CI-
FAR100 [5], and ImageNetl6-120 [2], in order to
compare fairly with the compared methods, we constrain
the model designed by our methods to have the same macro
skeleton as NAS-Bench-201 [4]. The skeleton is initiated
with a stem block. The main body of the skeleton includes
three stacks of cells, connected by a downsampling block.
Each cell has the same architecture and is stacked five
times. Each downsampling block downsamples the input
feature map by two times. Unlike NAS-Bench-201, we
do not set a fixed model width. When a new architecture
is designed, we search for a suitable width for this model
to constrain the number of parameters and FLOPs of the
model so that it does not exceed the maximum values in
NAS-Bench-201.

S1.2. Implement of Agents

All our agents are implemented using GPT-40. And we use
‘text-embedding-ada-002’ to extract text embeddings and
build vector databases.

Table S1. The training hyperparameter.

optimizer SGD initial LR 0.1
Nesterov v ending LR 0
momentum 0.9 LR schedule cosine
weight decay | 0.0005 epoch 200
batch size 256 normalization v

random flip p=0.5 random crop | size=32, padding=4

S1.3. Model Training Details

When training and testing the model, we use the same train-
ing dataset, validation dataset, test dataset and training hy-
perparameters as NAS-Bench-201. Table S1 shows the
training hyperparameters for CIFAR-10 and CIFAR-100.
ImageNet16-120 has the same training hyperparameters as
CIFAR-10 except that the random crop size is 16 and the
padding is 2 We repeat the experiment three times using
777, 888 and 999 as the random number seeds.

S2. Prompt design and Output Examples for
Agents

S2.1. Reader

The agent Reader has two LLM-based actions: selecting
relevant papers and extracting knowledge from the relevant

papers. Tables S3 and S4 present the prompt templates for
these two actions, respectively. Table S2 shows several ex-
amples of knowledge extracted from the papers.

S2.2. Proposer

Table S5 presents the prompt template used by the agent
Proposer to select modification suggestions.

S2.3. Modifier

Table S6 presents the prompt used to define the graph-based
neural architecture representation. Table S7 presents the
prompt template and examples used by the Modifier to gen-
erate new architectures through multi-turn dialogues. In the
first round, the Modifier generates a architecture containing
an undefined operation. In the second round, after provid-
ing a prompt to the Modifier, it successfully generates a new
architecture.

S2.4. Reflector

Reflector reflects on the historical records of faulty ar-
chitectures and performance-degrading architectures gener-
ated by the Modifier and generating experience in generat-
ing correct neural architectures and experience in design-
ing performance-enhanced architectures, respectively. Ta-
ble S8 presents the prompt template for reflecting on his-
torical records of faulty architectures and Table S9 presents
the prompt template for reflecting on historical records of
performance-degrading architectures. Tables S10 and Table
S11 present several examples of the two types of experi-
ence, respectively.

Table S2. Example of knowledge extracted from papers.

Paperld | Knowledge

603 [1
th 1. Design the Task Net to leverage knowledge co-embedding

features constructed from both image quality and disease
diagnosis, using multiple branches to specifically address
different aspects of the input data.

2. Implement a Global Attention Block within the Task Net to
extract task-specific features, focusing on both channel and
spatial attention to capture relevant features for each task.

1530 [7
71 . Adoption of a multi-scale architecture using reversible

residual blocks and squeeze modules to capture a wide
range of style details while minimizing spatial information
loss.

2. Exclusion of normalization layers in the reversible blocks
to facilitate learning direct style representation without in-
terference, enhancing the style transfer fidelity.

3. Implementing channel refinement in reversible residual
blocks to manage redundant information accumulation and
enhance stylization quality.

Table S3. Prompt template for selecting relevant papers.

###InstructiondH##

You are a computer vision research specialist with a deep background in the field of computer vision, particularly in deep
learning models and visual recognition tasks.

You needs to evaluate a given paper to determine if it can inspire to design the better basic blocks architecture of vision
models’ backbone.

###Goal##H#

According to the title and abstract of the paper, analyzing whether can get inspiration from the paper to design the better
basic architecture of visual model backbone.

###Constraints###

The inspiration must be related to the basic block architecture design of the visual model backbone.

###Workflow###

1. Read and understand the title and abstract of the paper.

2. Summarizing the innovation and contribution of this paper.

3. Analyzing whether you can get inspiration from this paper to design a better basic block architecture for visual models.
#H##HTitle###

{{ritle}}

Abstract###

{{abstract}}

#HHOuUtputH##H

Answer yes or no prefix with ##response## in the end.

Table S4. Prompt template for extracting knowledge from papers.

###Instruction###

You are a computer vision research expert. Please list the inspirations you get from this paper to design the basic block
architecture of the visual model backbone.

###Constraints###

1. A paper usually contains several sections: abstract, introduction, related work, methods, experiments and conclusion.
Please focus on the methods of the paper to respond.

2. Inspirations must to be detailed and related to designing the basic block architecture of the visual model backbone.
#HHInput#H#

The following is the content of the paper:

{{paper}}

#HOutputi#

You response should wrap each inspirations with <inspiration> and </inspiration>, and use ‘,” to separate different knowl-
edge.

Table S5. Prompt template for selecting modification suggestions.

###Instruction#H#

You are a computer vision research expert, and you have deep insights into neural arcgitecture design.

You will be given a block to be improved and several candidate inspirations, you need to compare the candidate inspirations
and rank them according their usefulness for guiding the improvement of the block.

###Block#H

The following is the block to be improved and candidate inspirations. The neural architecture of the block of the model is
described in the form of a computational graph.

{{block}}

###Candidate inspirations###

The following are the candidate inspirations. Each inspiration is given in the form of ‘inspiration index:inspiration’.
{{candidate inspirations}}

#H#HOutputi#

Please rank the all candidate inspirations in descending order according to their usefulness. You response should wrap all
inspiration index of the inspirations with <response> and </response>, and use ‘,” to separate different indexes.

Table S6. Prompt for defining the graph-based neural architecture representation.

Each block starts with “##block_name##”. In each line, you can use the “index:operation” to define the node of computation
graph or use the “index1->index” to define the edge of computation graph.
The following is a list of available operations:

Conv2d(out_channels, kernel size, stride, dilation, groups) Two-dimensional convolution operation, ‘out_channels’
represents the output dimension; ‘kernel_size’ represents the convolution kernel size; ‘stride’ represents the step size,
default: 1; ‘dilation’ is the hole convolution size, default: 1; ‘groups’ groups number of the channels, default:1.
Linear(out_channels) Linear fully connected layer, ‘out_channels’ represents the output dimension.
AvgPool2d(kernel size, stride) Two-dimensional average pooling operation, ‘kernel_size’ represents the kernel size,
‘stride’ represents the step size.
MaxPool2d(kernel_size,stride) Two-dimensional maximum pooling operation, ‘kernel_size’ represents the kernel
size, ‘stride’ represents the step size.
AdaptiveMaxPool2d(output_size) Two-dimensional maximum pooling operation pools the input feature map into a
feature map with a length and width of output_size. For example, AdaptiveMaxPool2d(output_size=1) pools a feature
map of the shape of (B,C,H,W) into (B,C,1,1) shape.
AdaptiveAvgPool2d(output_size) Two-dimensional average pooling operation.
Add Tensor-by-element addition operation, the input tensors’ shape must conform to the broadcasting rule.
Mul Tensor-by-element multiplication operation, the input tensors’ shape must conform to the broadcasting rule.
Multiply Matrix multiplication operation, the entered tensor shapes must conform to the tensor multiplication rule.
concat(dim) Tensor concating operation, all tensors input to this operation are concated in the dim dimension. The
sizes of the concated tensors dimensions other than the dim dimension should be consistent. For example, con-
cat(dim=1) concates all input tensors in the 1 dimension.
mean(dim) Average the tensor in dim dimension. For example, mean(dim=1) pools a input tensor of shape (B,L,D)
into the output tensor of shape (B,1,D) by average in the dimension 1.
max(dim) Maximize the tensor in dim dimension. For example, max(dim=2) pools a input tensor of shape (B,L,D)
into the output tensor of shape (B,L,2) by max in the dimension 2.
sum(dim) Sum the tensor in dim dimension. For example, sum(dim=0) pools a input tensor of shape (B,L,D) into the
output tensor of shape (0,L.,D) by sum in the dimension 0.
softmax(dim) Apply a softmax operation at dim dimension. For example, softmax(dim=1) calculate the softmax of
input tensor with shape (B,L,D) and the output tensor’s shape is (B,L.D).

The activation functions that can be used are: ReLLU, GELU, Sigmoid.

The normalization methods that can be used are:

BN Batch normalization
LN Layer normalization.
The tensor can be transformed by using the following operations:

permute(*dims) rearranges the tensor dimensions, ‘dims’ is the order of the new dimensions, for example: permute(0,
2, 3, 1) changes the tensor shape from (B, C, H, W) to (B, H, W, C).
repeat(*sizes) repeats the tensor along the specified dimensions. ‘sizes’ is a list containing the number of repetitions
along each dimension. For example: repeat(1, 3, 2, 4) repeats the tensor 1 times in the first dimension, 3 times in the
second dimension, 2 times in the third dimension, 4 times in the forth dimension.
reshape(*shape) changes the shape of the tensor to the specified shape; ‘shape’ is an array representing the shape of
new tensor; you can use -1 as the size of a dimension to automatically calculate the size of the dimension to ensure
that the total number of elements remains unchanged; for example: reshape(B, H, W, C) means changing the shape of
the tensor to (B, H, W, C).

Variables you may use include:
input: input feature map, the shape is (B,C,H,W).
output: output feature map, the shape is (B,dim,H,W). Noting that the output node can have only one input.
C: the number of channels of the input feature map.
dim: the number of channels of the output feature map.
H: the height of the input feature map.
W: the width of the input feature map.

You can use the basic +,—, X,/ operations.

Table S7. Prompt template and example for generating new architecture.

###Instruction###

You are an expert who is proficient in various model structures of deep learning.

Please make reasonable modifications to the specified block based on the characteristics of the block and the inspiration.
##HConstraints###

1. Please ensure that the number of input channels and output channels of the generated block are both C.

2. Note that structures in the modified block that unrelated to the proposal should be kept as original as possible.

3. The new neural architecture you output must comply with the BlockDefinition format.

###BlockDefinition###

{{Definition of the graph-based neural architecture representation}}

###block#Ht

{{block}}

###inspiration###

{{inspiration} }

###Design Experience###

Refer to the following suggestions to help you generate a block that better meets block definition.

{{Experience in generating the correct architectures}}

Refer to the following suggestions to help you generate a block that has better performance.

{{Experience in generating better-performing architectures}}

#HHOuUtput#H#

When outputting, you only need to output the block that meet the defined rules, and do not output other irrelevant information.

Human

4 Conv2d A (Conv2d B
Assistant @ [(out_channels=C kernel_size=3,stride=1) | '@_@ " (out_channels=Ckernel size=3,stride=1)

(output_size=(H,W))

Reflector | {‘status’:‘error’,‘context’:‘node 8 error: Undefined computation ROIAlign is used’}

The block you generate has following error: { ‘status’:‘error’, ‘context’: ‘node 8 error: Undefined computation ROIAlign is

Human s S .
used’ }, please fix it and generate a new one.
(Convad N) (ReLu) (Convad A}
A . ((out_channels=C kernel suo=3.stmlc=1u_'® kR 'LU) {(out_channels=C kernel size=3,stride=1)
ssistant

‘AdaptiveAvgPool2d Convad

(output_size=1) ((out_channels=C kernel size=1,stride=1) }

Reflector | {‘status’:‘success’}

Table S8. Prompt template for reflecting on the historical records of faulty architectures.

###Instruction##

You are an expert who is proficient in neural architecture design. The structure of neural networks is now described in terms
of directed acyclic graphs. The following is the definition of directed acyclic graphs.

{{Definition of the graph-based neural architecture representation}}

#HInput##

Now there is a network that does not fully meet the above definition and a hint of reason:

{{block}}

Error reason: {{error}}

###output#Ht

Please analyze the reason of network design errors, and based on this, give a general design tip to prompt users to accurately
design a network that fully meets the requirements. The tip should be wrapped in <tip> and </tip>.

Table S9. Prompt template for reflecting on the historical records performance-degrading architectures.

###Instruction#H#

You are an expert who is proficient in neural architecture design. You will be given a raw model and a modified model and
their corresponding accuracy on test dataset and you need to analyze why the accuracy of the raw model decreases after
modification, and give a suggestion to avoid this error in the next modification.

The structure of neural networks is now described in terms of directed acyclic graphs. The following is the definition of
directed acyclic graphs:

{{Definition of the graph-based neural architecture representation}}

###Input#

Their is the raw model and its accuracy:

{{raw block}}

Accuracy: {{raw block’s accuracy}}

Their is the modified model and its accuracy:

{{new block}}

Accuracy: {{new block’s accuracy}}

###Constrain###

1. The suggestion must be relevant to the neural network structure.

2. The suggestion must be a sentence no more than 50 words.

3. The suggestion must be must be general.

#HHOutputi#

Please think step by step about the reasons why the accuracy of the model decreases after modification and give a suggestion
to avoid this error in the next modification. The suggestion should be wrapped in <suggestion> and </suggestion>.

Table S10. Example of experience in generating correct archs.

1. When using LN, always ensure that the last dimension of the input tensor is the channel dimension. You can achieve this
by using the ‘permute’ operation to rearrange the tensor dimensions appropriately before applying LN.

2. When designing a neural network, ensure that the ‘out_channels’ parameter in the ‘Conv2d’ operation is divisible by the
‘groups’ parameter. This is necessary to maintain valid configurations and avoid errors. Specifically, if you set ‘groups*
to be equal to ‘C’ (the number of input channels), make sure that ‘out_channels’ is also a multiple of ‘C’.

3. When designing a neural network with multiple branches that will be concatenated or added together, ensure that all
branches maintain consistent spatial dimensions (height and width) throughout their respective operations. Use padding
in convolution and pooling layers to preserve the input dimensions, or carefully adjust stride and kernel sizes to ensure
outputs are compatible for concatenation or addition.

Table S11. Example of experience in generating correct archs.

[

Ensure modifications retain the original block’s dimensional consistency and spatial information to maintain performance.

2. Ensure that added layers and operations contribute to meaningful feature extraction and avoid unnecessary complexity.

3. Consider maintaining intermediate bottleneck layers and incorporating attention or pooling mechanisms to enhance fea-
ture extraction.

4. Ensure that any added skip connections or operations do not disrupt the learning process by excessively altering the
network’s expected data flow.

5. Ensure the newly added paths or operations do not interfere destructively with existing paths, and validate their impact on

gradient flow.

S3. Detailed Experimental Results

S3.1. Detailed Numberical Results

Table S12, Table S13, and Table S14 show the experimen-
tal results on CIFAR10, CIFAR100, and ImageNet16-120
using ResNet as the initial model. Table S15, Table S16,
and Table S17 show the experimental results on CIFAR10,
CIFAR100, and ImageNet16-120 using random models in
NAS-Bench-201 as the initial models. We repeat each ex-
periment with different random seeds for three times.

S3.2. Analysis of Large-scale NAD Experiment Re-
sults

Figure S1 illustrates the distribution of test accuracy of 500
models designed by NADER on CIFAR-100. It can be seen
that 30.8% of the models have an accuracy that exceeds the
optimal model in the neural architecture search space de-
signed by NAS-Bench-201. 58.8% of the proposals gen-
erated by the Proposer are effective, and the performance
of the model based on these proposals surpasses that of the
initial model. 19.2% of the models failed to converge dur-
ing training due to unreasonable design. At the same time,
these bad models exhibit noticeable differences in loss val-
ues within the initial few epochs, allowing for early detec-
tion and termination to reduce unnecessary training.

<1%

>73.51%

1%~70.86%

70.86%~73.51%

Figure S1. Distribution of test accuracy of 500 models designed
by NADER on CIFAR-100.

S3.3. Scalability under different L1.Ms.

NADER is flexible and can be driven by different LLMs
(e.g., the open-source DeepSeek-V3). Table S18 reports av-

Table S12. Detailed Experimental Results on CIFAR-10 with
ResNet initialization.

10 archs
validation test

5 archs

Trail C
validation test

Trail 1 91.28 94.83 91.28 94.83
Trail 2 90.83 94.37 90.86 94.37
Trail 3 91.39 94.35 91.39 94.35

Table S13. Detailed Experimental Results on CIFAR-100 with
ResNet initialization.

10 archs
validation test

5 archs
validation test

Trail 1 74.18 74.18 75.11 75.11
Trail 2 73.84 73.57 74.34 74.45
Trail 3 71.64 71.62 74.44 74.38

Trail

Table S14. Detailed Experimental Results on ImageNet16-120
with ResNet initialization.

10 archs
validation test

5 archs
validation test

Trail 1 47.53 47.72 49.27 49.58
Trail 2 49.00 48.52 49.00 48.52
Trail 3 47.40 47.72 47.40 47.72

Trail

Table S15. Detailed Experimental Results on CIFAR-10 with Ran-
dom initialization.

10 archs
validation test

5 archs

Trail L.
validation test

Trail 1 90.39 93.67 90.96 94.13
Trail 2 90.83 94.37 90.86 94.37
Trail 3 91.50 94.55 91.66 94.69

Table S16. Detailed Experimental Results on CIFAR-100 with
Random initialization.

10 archs
validation test

5 archs
validation test

Trail 1 74.04 74.35 74.04 74.35
Trail 2 73.84 73.57 74.34 74.45
Trail 3 74.44 74.15 74.86 74.72

Trail

Table S17. Detailed Experimental Results on ImageNet16-120
with Random initialization.

10 archs
validation test

5 archs
validation test

Trail 1 48.60 48.82 50.63 50.38
Trail 2 49.00 48.52 49.00 48.52
Trail 3 48.60 48.82 50.57 50.00

Trail

erage token cost, executability (E), quality (Q), and success
rate (SR) for different LLMs.

Table S18. Evaluation of different LLMs.

Task Model # Tokens (K) E Q SR
Macro DeepSeek-V3 052076 0.80 0.80 0.64
A0 GPTo 0.53+0.68 0.78 0.87 0.68
Mico DecpSeck-V3 0322041 096 0.88 0.84

GPT-40 031045 092 096 0.88

S3.4. Generalization Ability of the Model Designed
by NADER

After 500 designs, NADER designed a model on the
CIFAR-100 dataset that showed significant improvements
compared to the optimal model in the NAS method’s
search space (NB201-Optimal). We refer to this model as
NADER-500. We further retrain and test the NADER-500
on several other datasets to evaluate the generalization abil-
ity of the model designed by NADER. The experimental re-
sults are presented in Table S19. It show that NADER-500
demonstrates significant advantages on datasets involving
natural scenes, such as animals and vehicles (e.g., CIFAR-
100 [5], STL-10 [3], GT SRB [6]).

Table S19. Experimental results of NADER-500 and NB201-
Optimal on different datasets. The test accuracy is presented.

NB201-Optimal NADER-500

Dataset up) ams:1.30M) (#Params:1.28M)
CIFART00 [5] 73.23 75.97
GTSRB [6] 96.16 96.94
STL10 [3] 69.65 72.13

S3.5. Extension to ImageNet-1K.

We validate our method’s scalability on ImageNet-1K. Ta-
ble S20 presents test accuracy for the best models obtained
after 15 design iterations starting with ResNet and 30 iter-
ations starting with ConvNeXt, respectively. These models
were trained using the same configuration as ConvNeXt, ex-
cept with reduced training epochs (50) and warm-up epochs
(5) for efficiency. These results demonstrate that NADER
scales well to larger datasets.

Table S20. Results on ImageNet-1K.

Model Accuracy
ResNet 73.60
NADER-ResNet-15 74.62
ConvNeXt 77.42

NADER-ConvNeXt-30 78.10

S3.6. Time cost analysis.

The total time cost consists of the neural architecture de-
sign (NAD) cost and the model validation cost. The av-
erage time cost for 500 archs is shown in the Table S21.
(1) NADER focuses on NAD, whose time cost is negligi-
ble. (2) The primary time-consuming step is model vali-
dation, with a cost proportional to the number of searched
architectures (2781.79s per model). Extending the test-time
model search allows for evaluating more models, increas-
ing the chances of discovering higher-performing architec-
tures. Notably, our method achieves superior performance
with fewer searches.

Table S21. Time cost of NADER.

Modifier
21.68 s

Model Validation
2781.79s

Proposer
1.01s

S3.7. Architecture Details

Figure S2, Figure S4, Figure S3 and Figure S5 show sev-
eral examples of neural architectures designed by NADER
with ResNet as the initial model. It can be found that the
multi-agent collaboration method we designed can stimu-
late the creativity of LLMs and generate novel and effective
architectures, rather than simply generate architectures that
LLMs may have seen in the training process.

[Conde(out channels=C kernel size=1,stride=1)j

Sigmoid

%

HI-

[ConVZd(out channels=C kernel_size=3,stride=1)j

On

BN

ReLU

[ConVZd(out channels=C kernel_size=3,stride=1)j

Figure S2. The neural architecture of the optimal model obtained
by performing 10 iterations of search on CIFAR-10. The accuracy
on the test dataset is 94.83%.

[Cunvzd(oun,channels=c,kemel,snze=3,smde= 1)) [Cunvzd(oun,channelgc,kemel,size= 1,stride=1))

Conv2dout_channels=C kernel size=1stride=1)

ReLU

Conv2diout_channels=C kernel size=1stride=1)

Figure S3. The neural architecture of the optimal model obtained
by performing 10 iterations of search on ImageNet16-120. The
accuracy on the test dataset is 49.58%.

[Convzd(out channels=C kernel slze=3,stnde=1)j (AdapnveAnguolZd(Uutput size:l)j

reshape(B.C.1,1)

‘Conv2d(out_channels=C kernel size=1,stride=1)

RelLU

[Conde(Uut channels=C kernel size=3,stride= 1))

ReLU

=]
z

[Conde(outichannels=C,kernelisize:3,stnde:1D

/

Figure S4. The neural architecture of the optimal model obtained
by performing 10 iterations of search on CIFAR-100. The accu-
racy on the test dataset is 75.11%.

Figure S5. The neural architecture of the optimal model obtained
by performing 500 iterations of search on CIFAR-100. The accu-
racy on the test dataset is 76.00%.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

Haoxuan Che, Siyu Chen, and Hao Chen. Im-
age quality-aware diagnosis via meta-knowledge co-
embedding. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 19819-19829, 2023. |

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter.
A downsampled variant of imagenet as an alternative
to the cifar datasets. arXiv preprint arXiv:1707.08819,
2017. 1

Adam Coates, Honglak Lee, Andrew Y Ng, Adam
Coates, Honglak Lee, and Andrew Y Ng. An analysis
of single-layer networks in unsupervised feature learn-
ing. In Aistats, 2011. 7

Xuanyi Dong and Yi Yang. Nas-bench-201: Extend-
ing the scope of reproducible neural architecture search.
arXiv preprint arXiv:2001.00326, 2020. 1

Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-
tiple layers of features from tiny images. Master’s the-
sis, University of Tront, 2009. 1,7

J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel.
Man vs. computer: Benchmarking machine learning al-
gorithms for traffic sign recognition. Neural Netw, 32:
323-332,2012. 7

Linfeng Wen, Chengying Gao, and Changqing Zou.
Cap-vstnet: Content affinity preserved versatile style
transfer. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 18300-18309, 2023. |

	Detailed Experimental Setting
	Macro Skeleton
	Implement of Agents
	Model Training Details

	Prompt design and Output Examples for Agents
	Reader
	Proposer
	Modifier
	Reflector

	Detailed Experimental Results
	Detailed Numberical Results
	Analysis of Large-scale NAD Experiment Results
	Scalability under different LLMs.
	Generalization Ability of the Model Designed by NADER
	Extension to ImageNet-1K.
	Time cost analysis.
	Architecture Details

