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1. The derivation of null space

Here, we give the details about obtaining the null space of
the v. We want to proof that: any vector z ∈ RD in the null
space of the v ∈ RD, (I−vv⊤), is orthogonal to the vector
v. Namely, we have v⊤z = 0, where v is the vector with
norm 1. I is the identity matrix with the size of RD×D. We
can write the z as

z = (I − vv⊤)m, ∀m ∈ RD. (1)

Then we have

v⊤z = v⊤(I − vv⊤)m = (v⊤ − (v⊤v)v⊤)m, (2)

= (v⊤ − v⊤)m = 0, ∀m ∈ RD. (3)

Therefore, (I − vv⊤) is the null space of v.

2. Decoding information in HalluSpace

As we state in the main paper, to explore the information
behind the learned vectors vi ∈ RD, a common approach
is to decode the embeddings with Ov ∈ R|V|, where O =
[o1, . . . ,o|V|]

⊤ ∈ R|V|×D and V denotes the vocabulary.
We then sort Ov in ascending order, find the top-m indices,
and use the corresponding words to interpret v.

Using Nullu, we can extract the V at different layers
and then decode it via Ov to explore the internal infor-
mation behind V . We provide the decoding results in Ta-
ble. 1. Moreover, we select the words with the most fre-
quency in the output of LVLM with distorted images. For
a more straightforward interpretation, we directly selected
the words in Table. 1 to see the frequency of words before
and after Nullu to see if the LLM biases are mitigated.
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layer Top Tokens

16 dynamic either further above background floor tables ...
17 another notable left later others most tables ...
18 nearby notable either tables group optional others ...
19 notable middle either diverse background overall concentr ...
20 notable left nearby either background center middle ...
21 middle another left bottom top left right ...
22 left position middle another right background top ...
23 notable left position nearby left another bottom ...
24 position notable various various middle background above ...
25 position towards left nearby right another bottom ...
26 in position towards positions left nearby engaged ...
27 in position towards closer nearby right background ...
28 in the position closer background nearby right ...
29 in position closer towards nearby background a ...
30 in closer nearby right left another top ...
31 closer close position bottom another left top ...

Table 1. LLaVA-1.5-7B, top-rank-4, each singular vector of the
matrix is interpreted by identifying the top 10 tokens it represents.
We use the output embedding vector ej to find top-scoring tokens
j ∈ V for maximizing ⟨vi, ej⟩. Tokens have been censored for
readability.

3. Theoretical Analysis: How Nullu works?
3.1. Factor component analysis
The analysis is performed for each layer ℓ, and to avoid the
notational burden, we will drop ℓ and focus on each layer
separately. We use the same notations with these in the main
paper. Based on the heuristic in [? ], an embedding vector in
any transformer layer can be decomposed into interpretable
components. We suppose that the generated features fi can
be separated into three different elements:

fi ⇒ f̂iB̂︸︷︷︸
truthful contexts

+ f̃iB̃︸︷︷︸
hallucinated biases

+ ui︸︷︷︸
noise

. (4)

Therefore, give positive and negative samples as input,
we have

f+
i = f̂iB̂︸︷︷︸

truthful contexts

+ f̃iB̃︸︷︷︸
hallucinated biases

+ u+
i︸︷︷︸

noise

. (5)

f−
i = f̂iB̂︸︷︷︸

truthful contexts

+ u−
i︸︷︷︸

noise

, (6)
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based on which we have

E = f+
i − f−

i = f̃iB̃ + (u+
i − u−

i ). (7)

The noise can be approximated to 0 on average of the whole
data. The top-k singular vectors span exactly the same sub-
space of B̃, which can be the HalluSpace in our paper.
Moreover, SVD is also efficient since SVD gives the best
low-rank approximation of E. Thus, our approach can be
viewed as an approximate recovery of the latent subspace
for hallucination semantics.

3.2. Connections to DPO
In this subsection, we try to establish the conceptual con-
nection between DPO [? ] and the proposed Nullu. Our
study is mainly based on the theoretical analysis in [? ],
where a simple logistic model for the output token given
the (continuing) prompt is used. In the following parts, we
will drop ℓ and focus on each layer separately to avoid no-
tational burden.

Although the proposed Nullu is designed for LVLMs,
we mainly study its LLM parts, since our weight editing is
mainly conducted on this part. Therefore, in this section, we
use the term input to denote the extracted features x, con-
taining both the visual features processed by the previous
visual encoder, and the text prompts projected into the em-
bedding space. Given x with hallucinated response y+ and
truthful response y−, where the corresponding embedding
features denoted as x,y+,y− respectively, DPO optimizes
the loss

LDPO(πθ;πref) =− E(x,y+,y−)∼D[log σ(β log
πθ(y

+|x)
πref(y+|x)

− β log
πθ(y

−|x)
πref(y−|x) )], (8)

where, πref corresponds to the reference (or base) probabil-
ity model generating output y given x, πθ is the new prob-
ability model (parametrized by θ), σ is the logistic function
with σ(z) = (1 + exp(−z))−1, and β > 0 is a hyperpa-
rameter. The gradient of the loss LDPO with respect to θ at
initialization πθ = πref equals

∇θLDPO(πθ;πref) |πθ=πref

= −βE(x,y+,y−)∼D[∇θ log π(y
+|x)−∇θ log π(y

−|x)] |πθ=πref .

(9)

Let V denote the vocabulary. We start with an input x
(including both textual and visual features) and produce
M next-token predictions y1, · · · , yM ∈ V sequentially.
Suppose the model sequentially predicts token ym given
xm := (x, y1, · · · , ym−1) for each 1 ≤ m ≤ M , and let
xm denote the encoding of input xm. We assume a logistic
model generating each continuation ym given xm,

πθ(ym|xm) ≡ πW (ym|xm) = Z−1
m,W exp

(
o⊤
ym

Wxm

)
.

(10)

Here, oym is the classification vector which we use to get
the final word prediction, W is a weight matrix and Zm,W

is the normalizing constant:

Zm,W =
∑
y∈V

exp
(
o⊤
y Wxm

)
.

For the results in Eq. (10), we have assumed for simplic-
ity that the classification is performed with linearly trans-
formed encoding Wxm instead of the more common non-
linear transformations in the transformer architecture. And
the output probability is given by the logistic model, based
on which we can obtain the joint probability of observing
the entire continuation y = (y1, · · · , yM ) given the starting
input x as

πθ(y|x) ≡ πW (y|x) =
M∏

m=1

πW (ym|xm)

= Z−1
W exp

(
M∑

m=1

o⊤
ymWxm

)
,

where ZW =
∏M

m=1 Zm,W . We denote by x±
m, x±

m and
o±
ym

the positive/negative inputs, the corresponding embed-
ding and classification vector for the positive/negative con-
tinuation respectively. Plugging this into (9), the first step
DPO update has gradient

∇WLDPO(πW ;πref)|πW =πref

= −βE(x,y+,y−)∼D

[
M∑

m=1

(
o+
ym(x+

m)⊤ − o−
ym

(x−
m)⊤

)]
.

(11)

Note that the the normalization factors Zm,W (and hence
ZW ) are omitted when we take the difference of the gradi-
ents of the log-probabilities. With N pairs of inputs in D,
and we consider the case M = 1, the DPO gradient will be
an average over all the pairs:

∇WLDPO(πW ;πref)|πW =πref = − β

N

N∑
i=1

(o+
yi(x

+
i )

⊤ − o−
yi(x

−
i )

⊤),

(12)

where the extra index i mean i-th sample pairs. The Eq.(12)
is the formulation (7) in our main paper, which is

∇WLDPO = − β

N

N∑
i=1

(
oy+

i
(x+

i )
⊤ − oy−

i
(x−

i )
⊤)

=− β

N

N∑
i=1

(
oy+

i
(x+

i − x−
i )

⊤︸ ︷︷ ︸
feature difference

+(oy+
i
− oy−

i
)(x−

i )
⊤︸ ︷︷ ︸

output difference

)
.

(13)

The gradient contains a feature difference term. There-
fore, the gradient update can be interpreted as an attempt



to eliminate feature differences to avoid hallucinated re-
sponses. For Nullu, it tries to approximate such difference
via SVD and also attempts to eliminate it by null space
projection, which shows the connection between Nullu and
DPO.

4. Implementation Details of LVLMs
This section details the implementation of the evaluated
LVLMs and the methods used for OH mitigation. The over-
all experimental setup is summarized in Table 2. Unlike the
standard greedy method, which selects the most probable
token at each decoding step, beam search maintains a fixed
number of candidate sequences (beams) per step, ranking
them based on the accumulated probability scores of the
previous tokens (y<t). In our experiments, the beam search
method uses a num-beams setting of 3, specifying the num-
ber of candidate sequences retained at each step. We use
the default code for implementation of these two baselines
in HuggingFace Transformers Repository[? ].1

Parameters Value
Do-sample False
Num-beams (for beam search) 3
Maximum New Tokens (CHAIR) 64
Maximum New Tokens (POPE) 64
Maximum New Tokens (MME) 64
Maximum New Tokens (OPOPE) 256
Maximum New Tokens (LLaVA-Bench) 1024

Table 2. Hyper-parameters for LVLMs.

The complete hyper-parameters for Nullu across differ-
ent models in our experiments are as follows. Specifically,
there are three major hyper-parameters that can be actively
adjusted to optimize Nullu’s effectiveness across different
models:
1. Editing Layers ℓ: For all models, the editing layers are

specified by ℓ ∈ range(16, 32).
2. The Selected Top-k singular vector: The number of top-

k singular vectors selected varies by model. We use the
value 4 for LLaVA-1.5 on both CHAIR and POPE. Sim-
ilarly, we use 8 for MiniGPT-4 on the evaluated two
datasets. For mPLUG-Owl2, we use 32 on CHAIR and
16 on POPE.

3. Num-beams: This parameter also differs across models.
It is set to 3 for both LLaVA-1.5 and MiniGPT-4, while
for mPLUG-Owl2, it is set to 1.
For the comparison of Nullu with SOTAs methods

specifically designed for OH mitigation, the evaluation code
is built based on the public repository of HALC [? ]2.

1https://huggingface.co/docs/transformers
2https://github.com/BillChan226/HALC

Specifically, the hyper-parameters for HALC, VCD [? ],
DoLa [? ] and OPERA [? ] are reported in Table 3, Table 4,
Table 5 and Table 6, respectively. For each baseline, we
follow the official implementation and use the pre-trained
models and configurations from their respective repositories
to reproduce the reported results.

Parameters Value
Amplification Factor α 0.05
JSD Buffer Size m 6
Beam Size 1
FOV Sampling Exponential Expansion
Number of Sampled FOVs n 4
Exponential Growth Factor λ 0.6
Adaptive Plausibility Threshold 0.1

Table 3. HALC Hyperparameter Settings

Parameters Value
Amplification Factor α 1
Adaptive Plausibility Threshold β 0.1
Diffusion Noise Step 500

Table 4. VCD Hyperparameter Settings

Parameters Value
Repetition Penalty θ 1.2
Adaptive Plausibility Threshold β 0.1
Pre-mature Layers [0, 2 · · · , 32]

Table 5. DoLa Hyperparameter Settings

Parameters Value
Self-attention Weights Scale Factor θ 50
Attending Retrospection Threshold 15
Beam Size 3
Penalty Weights 1

Table 6. OPERA Hyperparameter Settings

5. POPE Settings and Additional Results
Polling-based Object Probing Evaluation (POPE) [? ],
presents a streamlined approach to assess object hallucina-
tion. POPE interacts directly with the examined LVLM,
which distinguishes it from CHAIR. Within this bench-
mark, LVLMs are queried to answer if a specific object ex-
ists in the given image. The ratio between queries prob-
ing existent objects and non-existent objects is balanced
(i.e.,50% vs. 50%). It encompasses three sampling set-
tings: random, popular, and adversarial, each distinct in

https://huggingface.co/docs/transformers
https://github.com/BillChan226/HALC


constructing negative samples. In the random setting, ob-
jects absent from the image are chosen randomly. The pop-
ular setting selects missing objects from a high-frequency
pool, while in the adversarial setting, co-occurring objects
not present in the image are prioritized. We use the POPE
benchmark aggregating data from MSCOCO [? ]. For each
experiment, we select 500 images under each sampling set-
ting and generate 6 questions per image. The evaluation
pivots on four key metrics: Accuracy, Precision, Recall, and
the F1 score.

5.1. POPE Results
We conduct the comparison between the raw LVLMs and
the one implemented with Nullu on POPE and provide the
results in Table 8.

We also tested different OH methods on MiniGPT-4 and
provided the results in Table 7. The results show that Nullu
outperforms all other methods by a significant margin re-
garding the accuracy and F1 score across all three types
of POPE VQA tasks (random, popular, adversarial). Our
experiments show that the MiniGPT-4 tends to provide the
answer with “yes”, which leads to a high recall ratio for
most tested OH methods. However, the Precision of these
methods is generally lower than 60%, resulting in a lower
F1 score. However, Nullu significantly improves the Preci-
sion of the MiniGPT-4, resulting in a noticeable improve-
ment in the F1 score. Moreover, we also see that VCD also
has a lower recall, indicating that the LLM bias of Mini-
GPT makes the model tend to provide the answer with “yes”
when responding.

5.2. OPOPE results
While this interaction is not problematic for evaluating
decoding-based baselines, it limits the applicability of
POPE to post-hoc OH mitigation methods. This direct in-
teraction also creates greater instability when the examined
LVLM is based on smaller language backbones, such as
LLaMA-7B, which has less robust chat capabilities. To ad-
dress these issues, offline POPE (OPOPE) was introduced
in HALC [? ], where a comparison is made between this
approach and other effective decoding methods.

Since OPOPE evaluates directly based on the caption
generated for each image, it follows the caption generation
procedure from CHAIR but differs in the subsequent metric
calculation. When computing the OPOPE scores, we follow
the processing procedure of CHAIR while adopting POPE’s
metric calculation methodology.

For every sampled 500 images in the validation split of
MSCOCO. The captions generated by the models are tok-
enized separately and then each word is singularized. Sub-
sequently, the words are mapped to MSCOCO objects using
the synonym and double-word lists provided in [? ].

Next, three hallucination test object lists are constructed

following the sampling strategies proposed in the POPE
method. We refer detailed explanations of the different op-
tions to its original paper[? ]. Each list contains six objects,
with a 1:1 ratio of ground-truth to nonexistent objects to
ensure label balance. These lists are originally used to gen-
erate polling questions based on the template “Is there a/an
{} in the image?” in [? ].

After obtaining the objects set from the generated cap-
tions and the three test objects list, we assess whether the
captions include the ground-truth or nonexistent objects.
The comparison results are used to compute scores as the
score of the corresponding sampling strategy setting.

The primary metric in OPOPE is adjusted to enable more
reliable comparisons. Since offline evaluations are less
likely to include the exact hallucinated objects in descrip-
tions, false negatives (FNs) and the resulting recall become
less reliable. To address this, and in line with HALC, we
adopt F-beta as the main metric for OPOPE instead of F-
1, reducing the emphasis on FNs. Specifically, the F-beta
score is defined as: Fβ = (1+β2) · (precision · recall)/(β2 ·
precision + recall), where β = 0.2 is used throughout our
experiments following [? ].

The detailed and comprehensive evaluation results under
each sampling strategy incorporating OPOPE are presented
in Table 9. From the results, we see that our method achieve
7 best results (denoted by bold) in 9 comparisons, which
again demonstrates the effectiveness of our method.

6. MME Numerical Results

In Table 10, we present the performance of the edited
LLaVA-1.5 baselines on the perception-related tasks of the
MME benchmark.

The baselines demonstrate consistent performance pat-
terns, with Nullu uniformly improving the perceptual com-
petencies of the LVLM model. Specifically, the edited
model shows improvement for tasks typically used to es-
timate hallucination capability [? ], including color, ex-
istence, count, and position. Furthermore, likely due to
Nullu’s effect in alleviating language priors, the model ex-
hibits enhancements across all tasks, particularly in OCR,
achieving an additional 84.35-point improvement in the
total score. Furthermore, Table 11 showcases the per-
formances on recognition-related tasks within the MME
benchmark. The results suggest that implementing Nullu
while mitigating hallucination issues and enhancing percep-
tual capabilities does not compromise the inherent reason-
ing abilities of LVLM. This is evident from the consistent
overall recognition scores, which indicate that the model’s
fidelity remains unaffected by the intervention. Nullu sig-
nificantly surpasses the original model, demonstrating a
comprehensive performance improvement in reducing OH
while maintaining generation quality.



Setting Model Method Accuracy Precision Recall F1 Score

Random MiniGPT4

Greedy 64.33 58.66 97.13 73.14
Beam Search 62.10 57.15 96.67 71.84
DoLa 64.27 58.82 95.10 72.68
VCD 57.90 55.69 77.27 64.73
HALC 64.87 59.04 97.13 73.44
Nullu 77.23 76.54 78.53 77.53

Popular MiniGPT4

Greedy 56.63 53.66 97.13 69.13
Beam Search 56.47 53.58 96.67 68.95
DoLa 56.58 53.72 95.10 68.65
VCD 55.30 53.59 79.20 63.92
HALC 57.00 53.88 97.13 69.31
Nullu 70.13 67.24 78.53 72.45

Adversarial MiniGPT4

Greedy 55.17 52.81 97.13 68.42
Beam Search 55.50 53.02 96.67 68.48
DoLa 55.85 53.28 95.10 68.29
VCD 52.90 51.99 75.60 61.61
HALC 55.53 53.02 97.13 68.60
Nullu 66.70 63.50 78.53 70.22

Table 7. POPE results with random, popular and adversarial samplings compared to existing OH mitigation methods.

Setting Model Method Accuracy Precision Recall F1 Score

random

LLaVA-1.5
Original 88.98 88.65 89.43 89.03
Nullu 89.45 91.41 87.10 89.20

MiniGPT4
Original 64.33 58.66 97.13 73.14
Nullu 77.23 76.54 78.53 77.53

mPLUG-Owl2
Original 81.83 77.80 89.07 83.06
Nullu 83.33 79.10 90.60 84.46

popular

LLaVA-1.5
Original 84.58 81.61 89.43 85.32
Nullu 85.37 84.25 87.10 85.63

MiniGPT4
Original 56.63 53.66 97.13 69.13
Nullu 70.13 67.24 78.53 72.45

mPLUG-Owl2
Original 75.77 70.35 89.07 78.61
Nullu 77.47 71.75 90.60 80.08

adversarial

LLaVA-1.5
Original 77.97 72.79 89.43 80.24
Nullu 79.40 75.51 87.10 80.88

MiniGPT4
Original 55.17 52.81 97.13 68.42
Nullu 66.70 63.50 78.53 70.22

mPLUG-Owl2
Original 72.77 67.17 89.07 76.58
Nullu 74.03 68.05 90.60 77.72

Table 8. Results on POPE. Original denotes direct sampling for LVLMs, whereas Nullu refers to edit the model with the proposed method.



Setting Model Method Accuracy Precision Recall F Score

Random

LLaVA-1.5

Greedy 81.52 98.41 64.07 96.42
Beam Search 81.67 98.67 64.20 96.67
DoLa 81.38 98.11 64.00 96.14
OPERA 81.62 98.57 64.17 96.58
VCD 80.57 98.41 62.13 96.25
HALC 79.58 98.21 60.27 95.89
Nullu 81.18 98.05 63.63 96.05

MiniGPT-4

Greedy 72.42 98.49 45.53 94.25
Beam Search 72.65 98.70 45.90 94.51
DoLa 72.45 98.58 45.57 94.34
OPERA 72.57 98.77 45.70 94.52
VCD 72.35 98.19 45.53 93.97
HALC 72.08 98.62 44.80 94.25
Nullu 72.68 99.06 45.80 94.82

mPLUG-Owl2

Greedy 79.45 97.74 60.30 95.46
Beam Search 79.45 97.52 60.43 95.27
DoLa 78.33 97.60 58.10 95.09
OPERA 78.31 97.73 57.96 95.21
VCD 78.19 98.23 57.42 95.61
HALC 77.83 97.72 57.00 95.10
Nullu 80.30 98.40 61.60 96.19

Popular

LLaVA-1.5

Greedy 78.93 91.17 64.07 89.71
Beam Search 79.30 91.98 64.20 90.47
DoLa 78.72 90.69 64.00 89.26
OPERA 79.22 91.80 64.17 90.30
VCD 77.57 89.87 62.13 88.35
HALC 77.47 91.87 60.27 90.05
Nullu 79.80 94.06 63.63 92.36

MiniGPT-4

Greedy 70.80 92.01 45.53 88.53
Beam Search 71.32 93.35 45.90 89.77
DoLa 70.90 92.33 45.57 88.82
OPERA 71.10 92.82 45.70 89.27
VCD 70.33 90.30 45.53 86.98
HALC 70.92 93.80 44.80 90.00
Nullu 71.97 96.08 45.80 92.19

mPLUG-Owl2

Greedy 76.00 87.90 60.30 86.38
Beam Search 75.90 87.50 60.43 86.02
DoLa 75.20 88.36 58.10 86.60
OPERA 75.02 88.06 57.96 86.33
VCD 74.86 88.16 57.42 86.37
HALC 75.77 91.34 57.00 89.26
Nullu 78.20 92.22 61.60 90.49

Adversarial

LLaVA-1.5

Greedy 76.97 86.36 64.07 85.22
Beam Search 77.27 86.92 64.20 85.75
DoLa 76.85 86.18 64.00 85.05
OPERA 77.03 86.40 64.17 85.26
VCD 75.88 85.71 62.13 84.48
HALC 76.57 89.44 60.27 87.80
Nullu 77.58 88.27 63.63 86.98

MiniGPT-4

Greedy 70.43 90.65 45.53 87.32
Beam Search 70.98 92.06 45.90 88.63
DoLa 70.50 90.85 45.57 87.50
OPERA 70.78 91.63 45.70 88.21
VCD 69.82 88.43 45.53 85.32
HALC 70.52 92.22 44.80 88.60
Nullu 71.10 92.73 45.80 89.21

mPLUG-Owl2

Greedy 74.23 83.58 60.30 82.36
Beam Search 73.78 82.51 60.43 81.37
DoLa 73.52 83.98 58.10 82.55
OPERA 73.17 83.45 57.96 82.06
VCD 72.85 83.01 57.42 81.61
HALC 74.02 86.41 57.00 84.72
Nullu 76.90 88.76 61.60 87.28

Table 9. Detailed OPOPE results with random, popular and adversarial samplings.



Model Method Existence Count Position Color Posters Perception Total

LLaVA-1.5 Original 181.67±2.36 118.33±12.47 104.44±10.39 152.78±5.67 117.23±4.79 Original 1246.36±5.79Nullu 190.00±4.08 121.11±7.74 105.56±8.20 156.67±9.81 127.55±4.20

Model Method Celebrity Scene Landmark Artwork OCR
Nullu 1330.71±19.77

LLaVA-1.5 Original 111.67±3.90 144.83±1.50 130.65±5.26 108.92±2.99 75.83±5.89

Nullu 115.59±6.60 147.92±1.36 131.66±1.09 113.00±2.07 121.67±8.25

Table 10. Results on all MME perception-related tasks.

Model Method
Common Sense

Reasoning
Numerical

Calculation
Text

Translation
Code

Reasoning
Recognition

Total

LLaVA-1.5 Original 111.19±4.68 59.17±7.73 79.17±8.25 71.67±11.24 321.19±2.15

Nullu 112.14±3.55 65.00±16.20 81.67±7.73 92.50±15.94 351.31±2.61

Table 11. Results on all MME recognition-related tasks.

7. Analysis about HalluSpace

Figure 1. The illustration of difference vectors and random vectors
in the feature space.

This section provides a more comprehensive study about
the question Does HalluSpace represent the hallucination
biases?. In other words, can the HalluSpace learned from
the prepared hallucinated pairs adequately represent the true
OH during the test? Ideally, if HalluSpace effectively rep-
resents these biases, the difference vectors from test sam-
ples with few OH issues after editing should have larger
projected components when mapped onto HalluSpace than
these random ones. Indeed, if the HalluSpace represents the
OH problematic direction, the aforementioned difference
vectors from test samples should gather together around this
direction. This is further illustrated in Figure. 1.

To evaluate this, we select 100 test samples from CHAIR
where Nullu successfully mitigates OH issues. We compute
difference vectors ei for each sample between the raw and
edited LLaVA features. Moreover, we generate 100 random
vectors ri as a comparison baseline. All these vectors are
normalized to avoid the effects of norms. Moreover, we use
σi to represent the projected components. Figure. 1 shows

the distribution of vectors on a normalized sphere.
Given V4 (rank-4), each projected component σi resides

within R4. We then calculated σi = eiV4 for all se-
lected samples and random vectors (σi = riV4), averaging
||σ|| across samples. The results is provided in Table 12.
The table shows that the average ||σ|| of difference vectors
across layers is significantly larger (10×) than that of ran-
dom vectors. Since the selected test samples were success-
fully edited to avoid OH, this evidence suggests that Hal-
luSpace captures directions in the feature space associated
with hallucination and inaccuracies in LVLM responses.

8. LLaVA-Bench
8.1. Prompt for GPT-4V Aided Evaluation
As we leverage LLaVA-Bench [? ] to qualitatively eval-
uate the overall performance using GPT-4V Aided Evalu-
ation3, in this section, we main describe the prompt used
for evaluation. The assessments using GPT-4V are based
on the accuracy and level of detail in the responses gen-
erated by LVLMs, following the approach described in [?
]. The specific prompt structure is detailed in Table 13.
During the evaluation, we collect the responses from two
different LVLMs and then use the responses to replace the
“{Response}” in the prompt, which is then sent to GPT-4V
for scoring. Next, we analyze the GPT-4V outputs to assess
the accuracy and detailedness of the LVLMs’ responses. We
further provide an evaluation example in Table 14 to further
illustrate this process.

8.2. More case studies
Additional case studies on the LLaVA-bench are presented
in Figure 3 and Figure 4 to illustrate the effectiveness of our
approach. Note that the case in Figure 4 provides an exam-
ple that the proposed Nullu can correctly generate an HTML
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Layers 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Diff. 0.269 0.266 0.270 0.270 0.279 0.278 0.284 0.279 0.287 0.283 0.288 0.292 0.291 0.293 0.300 0.386
Rand 0.023 0.025 0.027 0.026 0.026 0.021 0.022 0.022 0.023 0.025 0.027 0.026 0.025 0.029 0.030 0.021

Table 12. Norm average of difference vectors and random vectors at different layers in the LVLM.

Description:
AI that scores image description accuracy and detailedness.

Instructions:
You are an AI designed to evaluate and score the performance of two AI assistants in describing a given image. Your
primary focus is on the accuracy and detailedness of their descriptions. You will assess the accuracy by checking
for hallucinations - any part of the description that is inconsistent with the image content. For detailedness, you will
consider how rich the response is in necessary details, excluding any hallucinated parts. You will provide scores on
a scale from 1 to 10 for each assistant separately, based on these criteria. After scoring, you will offer an explanation
for your evaluation, ensuring it is free from bias and not influenced by the order of presentation of the responses.

Input format:

[Assistant 1]
{Response 1}
[End of Assistant 1]

[Assistant 2]
{Response 2}
[End of Assistant 2]

Output format:

Accuracy:
Scores of the two answers:
Reason:

Detailedness:
Scores of the two answers:
Reason:

Table 13. The configuration to build an image-description evaluator with GPT-4V

script that meets the need in the text prompts, which also
corresponds to the experimental results on MME, where the
edited model is shown that can achieve better performance
in Code Reasoning tasks, further demonstrating the effec-
tiveness of our method. The generated HTML website is
shown in Figure 2.

Figure 2. The generated website of Nullu.



Input:

[Assistant 1]
In the context of the movie, this scene is significant as it captures a romantic moment between the two main characters,
Jack and Rose, who are sharing a passionate kiss while being on a boat in the ocean. This scene is crucial as it
highlights the emotional connection between the two characters and adds to the overall narrative of the movie. The
kiss takes place during a storm, which adds to the intensity and drama of the scene, further emphasizing the strong
bond between the two characters and their willingness to face challenges together.
[End of Assistant 1]

[Assistant 2]
In the context of the movie “Titanic”, this scene of a man and a woman (Rose DeWitt Bukater and Jack Dawson)
hanging onto a rope while being on a boat or ship at sea signifies their romantic connection and the beginning of their
relationship. It’s a pivotal moment in their story, as they first met and fell in love onboard the Titanic. This scene,
along with others, portrays their journey of love, loss, and redemption, which ultimately led to their tragic fate. The
romantic and emotional connection between Rose and Jack, as well as their shared experiences onboard the Titanic,
form the core of their relationship and the movie’s themes.
[End of Assistant 2]

GPT4-V Output:

Accuracy:
Scores of the two answers:
Assistant 1: 1
Assistant 2: 7
Reason: Assistant 1 inaccurately describes the scene as featuring a passionate kiss during a storm, which is not
depicted in the image. The image shows no kiss or stormy weather; instead, it captures a moment where the characters
are standing at the bow of the ship with arms outstretched. This is a significant misinterpretation of the content,
leading to a low accuracy score.
Assistant 2, while not perfectly accurate, describes the scene with less deviation from the image. The mention of them
“hanging onto a rope” and it being “a pivotal moment in their story” slightly strays from what is visually depicted,
as they are not hanging but rather standing with arms extended and supported. The response is closer to the actual
content, thus earning a higher score.

Detailedness:
Scores of the two answers:
Assistant 1: 3
Assistant 2: 5
Reason: Assistant 1 provides a narrative with emotional context, describing the intensity and drama of a supposed
stormy scene. However, this description does not match the calm, sunset setting in the image and introduces elements
like a kiss that aren’t present. While rich in narrative detail, it mismatches the actual visual content significantly.
Assistant 2 provides more contextual information about the characters and their relationship within the movie, men-
tioning key themes of love, loss, and redemption. Although it erroneously mentions them “hanging onto a rope”
and meeting for the first time in this scene, it still delivers a more aligned description of the emotional and thematic
elements present in the actual scene depicted, hence a slightly higher score.

Table 14. Evaluation example for the image-description evaluator with GPT-4V.



Figure 3. More examples of Nullu on LLaVA-Bench.



Figure 4. More examples of Nullu on LLaVA-Bench.
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