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Supplementary Material

A. Implementation Details
Our implementation is based on InternVL2 [83]. The vi-
sual encoder is a ViT-L/14 [20] whose weights are initial-
ized from InternViT-300M-448px-V1.5 [15]. The progres-
sive encoding is introduced in the last 8 layers of the 24-
layer ViT (i.e., L̃ = 8 and L = 24), and the weights of
temporal attention (T-MHA) are randomly initialized. The
input resolution for the visual encoder is set to 448×448,
with dynamic resolution [15] enabled for image data in both
stages. The number of image tiles ranges up to 12, based on
the image’s aspect ratio and resolution. InternLM2-Chat-
1.8B [7] is employed as the LLM for PVCInternVL2-2B, while
InternLM2.5-Chat-7B [7] is utilized for PVCInternVL2-8B.

Training settings of the pre-training and instruction tun-
ing stages are listed in Tab. 6.

Table 6. Training settings of PVC.

Training stage Pre-training Instruction tuning

Max sequence length 8192
Max tile/image 12
Token/frame (tile) 64
Number of image repeats 4
Number of video frames 16-96, uniform
Optimizer AdamW
Learning rate 2e-4 4e-5
Weight decay 0.01 (2B), 0.05 (8B)
Optimizer momentum β1, β2 = 0.9, 0.999

Learning rate schedule constant with warmup cosine decay
Warmup steps 100 240
Training steps 25k 8k
Batch size 2048 1024

B. Dataset Details
The data used in the pre-training stage are listed in Tab 7.
All image-text data is adopted from InternVL2 [83]. For
video datasets, we initially utilize large-scale but mixed-
quality datasets including InternVid-10M [90], WebVid-
10M [3], TextVR [93] and OpenVid-1M [70] that primarily
feature short video captions. To enhance the model’s under-
standing of visual details, we further incorporate densely
captioned video-text datasets of varied video lengths in-
cluding MiraData [35], ShareGPT4Video [14] and the Vript
series [94]. To improve capabilities in multi-turn conver-
sation and visual reasoning, we employ VideoGPT+ [62],
STAR [91], EgoTaskQA [33], CLEVRER [95] and Me-

Table 7. Summary of datasets used in the pre-training stage.
*IT refers to the instruction tuning data in VideoChat2.

task dataset
Short Caption Laion (en&zh) [74], COYO [6], COCO [51]
OCR Wukong-OCR [23], LaionCOCO-OCR [75]
Detection GRIT [72], Objects365 [79]
Conversation All-Seeing (en&zh) [87]
Image-text instruction data (see Tab. 8a)
(a) Image-text datasets used in the pre-training stage.

task dataset
InternVid-10M [90], WebVid [3], OpenVid [70],

Short Caption
TextVR [93]
MiraData [35], ShareGPT4Video [14], Vript [94],

Detailed Caption
Vript Chinese [94], LSMDC [73]
STAR [91], VideoGPT+ [62], EgoTaskQA [33]

VQA
CLEVRER [95], Mementos [89]

Classification NTU RGB+D [78]
Comprehensive VideoChat2-IT* [49], FineVideo [21]

(b) Video-text datasets used in the pre-training stage.

mentos [89]. Additionally, NTU RGB+D [78] is used to
boost robustness to action recognition. Lastly, to enhance
the model’s holistic abilities, we utilize comprehensive
datasets VideoChat2-IT [49] and FineVideo [21], which ag-
gregate elements of multiple-choice answering, open-ended
question-answering, and conversations.

Datasets used for instruction tuning are listed in Tab 8.
The image-text data is also adopted from InternVL2 [83].
For video-text data, low-quality datasets used in the pre-
training stage are replaced by compositional high-quality
datasets like LSMDC[73], TVQA [45], HiREST [99] and
LLaVA-Video [103].

In Tab. 9, we list the training data scale of our PVC and
some existing image-video general VLMs. Compared to
the previous state-of-the-art model, Qwen2-VL, we use sig-
nificantly less data while achieving similar or better perfor-
mance on most benchmarks. Compared to other VLMs, our
PVC requires more pre-training data since the temporal at-
tention layers in ViT introduce new parameters that are ran-
domly initialized.

C. Appended Ablation Studies

C.1. Number of Tokens per Frame
We adjust token-per-frame while keeping the total num-
ber of visual tokens fixed. Reducing tokens per frame in-
creases image repetitions and video input frames. Com-
pared to 256 tokens, 64 tokens perform similarly on im-
age tasks but significantly better on long video tasks (e.g.,



Table 8. Summary of datasets used in the instruction tuning
stage. *IT refers to the instruction tuning data in VideoChat2.

task dataset
General QA VQAv2 [22], GQA [32], OKVQA [64], VSR [54]

AI2D [40], ScienceQA [60], Chemistry Data [48]
Science

TQA [41]
PMC-VQA [101], VQA-RAD [44], VQA-Med [4]
Medical-Diff-VQA [29], PathVQA [26],Medical
SLAKE [52], PMC-CaseReport [92]
ChartQA [66], LRV-Instruction [55], PlotQA [69]
Unichart [67], MMC-Inst [56], DVQA [36]
TableMWP [61], FigureQA [37], MapQA [10]

Chart

SciTSR [16], Fintabnet [104]
CLEVR [34], MetaMath [96], GeoQA+ [8]
Geometry3k [59], GeoS [76], Unigeo [12]Mathematics
Super-CLEVR [50], MathQA [1]
Art500k [63], MovieNet [30], KonIQ-10k [27]

Knowledge
KVQA [77], ViQuAE [46]
InfoVQA [68], TextVQA [80], ArT [17]
CASIA [53], Chart-to-text [38], COCO-text [84]
CTW [97], EATEN [24], ICDAR2019-LSVT [82]
ICPR MTWI [25], NAF [19], ReCTS [100]
TextOCR [81], LLaVAR [102], HME-100k [98]
POIE [42], SROIE [31], ST-VQA [5]

OCR

EST-VQA [88], IAM [65]
Document DocVQA [18], DocReason25k [28]

RefCOCO [39], RefCOCO+ [39], RefCOCOg [39]
Grounding

RD-BoxCoT [13]
ALLaVA [11], LAION-GPT4V [43]

Conversation
MMDU [58], TextOCR-GPT4V [9]

Detection Objects365 [79], V3Det [85]
(a) Image-text datasets used in the instruction tuning stage.

task dataset
ShareGPT4Video (en&zh) [14], Vript Chinese [94]

Detailed Caption
Vript [94], LSMDC [73]
STAR [91], EgoTaskQA [33], Mementos [89]

VQA
TVQA [45], HiREST [99], PerceptionTest [71]

Classification NTU RGB+D [78]
Comprehensive VideoChat2-IT* [49], LLaVA-Video [103]

(b) Video-text datasets used in the instruction tuning stage.

Table 9. Training data scale of our PVC and existing VLMs.

Model # Pre-training samples # SFT samples
Oryx-MLLM 4.5M 1.3M
LLaVA-OneVision 4.5M 4.8M
InternVL2 45M 7.3M
Qwen2-VL 1.4T tokens unknown
PVC (ours) 50M (102B tokens) 8.2M (33B tokens)

VideoMME), with a 16% speed decrease. Compressing to
16 tokens performs worse and requires much more compu-
tation with more input frames. Therefore, to balance per-
formance and efficiency, we choose 64 tokens per frame as
the final setting.

C.2. Number of Temporal Attention Layers
As described in Sec.3.2, we add temporal attention to the
last L̃ layers of the ViT. As shown in Tab. 11, L̃ = 8 per-
forms better than L̃ = 1 or L̃ = 4. Setting L̃ = 24 (adding

Table 10. Ablation of the number of tokens per frame. The
ablation is conducted on 2B model with shortened pre-training on
10M samples. FPS is tested with the same setting as Tab. 5.

# token
/frame

# image
repeat.

# video
frame.

Info
VQA

MMB MVBench
Video
MME

FPS

256 1 16 58.7 74.8 62.1 45.0 12.7
64 4 64 58.5 74.9 62.4 46.7 10.6
16 16 256 53.3 74.9 61.8 46.4 7.2

Table 11. Ablation of the number of temporal attention layers
in ViT. The ablation study is conducted on 2B model with short-
ened pre-training on 10M samples.

# temp. attn.
layer (L̃)

MVBench VideoMME InfoVQA MMB

1 61.6 46.3 55.8 74.2
4 62.1 46.6 57.3 74.7
8 62.4 46.7 58.5 74.9
24 62.5 46.7 58.8 74.8

temporal attention to each layer) does not provide signifi-
cant improvements over L̃ = 8 but increases computational
overhead. Therefore, we choose L̃ = 8, i.e., adding tempo-
ral attention to the last 8 layers of the ViT.

C.3. Training Strategy
During the pre-training phase, we unfreeze the parameters
of the ViT and LLM, which differs from existing meth-
ods [2, 15, 47, 57, 83, 86]. The ablation results in the Tab. 12
empirically explain why we adopt this training strategy. For
InternVL2, keeping ViT and LLM fixed or trainable during
pre-training has minimal impact on the final performance.
However, for our PVC, unfreezing the ViT and LLM dur-
ing pre-training leads to significantly better performances.
We suppose this improvement is due to the following rea-
sons: (1) Training the ViT jointly with the newly added pro-
gressive encoding module enables better capture of comple-
mentary information and minimizes redundancy. (2) The
LLM’s inherent capability to process multi-frame videos is
limited, especially for integrating different information ex-
tracted from the repeated frames of an image. Thus, addi-
tional training is needed for effective adaptation.

D. Qualitative Results
Image Progressive Encoding. As shown in Fig. 4, when an
image is repeated as multiple frames, our PVC can extract
more precise details and supplementary information from
the subsequent frames. For instance, the model extracts the
title “Goal 15 life on land” from the first frame and corre-
sponding detailed goals from subsequent frames. Incorrect
contents, e.g. “10% of the total land area”, are also corrected
using the information extracted from subsequent frames.



Table 12. Ablation of the training strategy. The ablation study is conducted on 2B model with shortened pre-training on 10M samples.
“Unfreeze ViT & LLM” means unfreezing the parameters of the ViT and LLM during the pre-training stage with a lower learning rate
(×0.1). * InternVL2 model is trained under our ablation setting.

Model
Unfreeze

ViT & LLM
MVBench VideoMME MLVU DocVQA InfoVQA MMB

InternVL2* 60.9 44.7 50.0 86.1 58.7 74.2
InternVL2* ✓ 61.9 44.9 50.5 86.4 59.1 75.1
PVCInternVL2 60.6 45.5 53.2 84.8 57.3 74.4
PVCInternVL2 ✓ 62.4 46.7 55.1 86.7 58.5 74.9

Video Dynamic Capture. As shown in Fig. 5, the video
contains several consecutive collisions, testing the model’s
ability to capture spatiotemporal dynamics. InternVL2 [83]
describes each collision moment independently but lacks a
description of the whole process and includes inaccuracies.
LLaVA-OneVision [47] and Qwen2-VL [86] exhibit numer-
ous errors when capturing object interactions. In contrast,
our PVC not only accurately describes the process of each
collision and the associated object movements but also iden-
tifies the causal relationships between multiple collisions.



PVC (image repeat ×	𝟏):
The image is an infographic related to Sustainable Development Goal 15, which 
focuses on Life on Land. It highlights the importance of forests in Indonesia and 
the challenges they face. Here is a detailed breakdown of the content:

Title and Header
• SDGs FACTSHEET
• INDONESIA
• GOAL 15
• LIFE ON LAND

Key Points
1. Forest Area
• There are 91 million hectares of forests in Indonesia, covering just over 10% 

of the total land area.
2. Archipelagic and State Forests
• Indonesia is home to the third largest tropical forests, which are essential for 

the livelihood of 48.8 million Indonesians. These forests cover 14.9 million 
hectares, or nearly 8% of Indonesia's total land area.

3. Biodiversity
• Tropical forests are home to important biodiversity, providing a highly 

effective natural terrestrial carbon storage system.
4. Mangrove Forests
• Mangrove forests provide multiple ecosystem services, including fishery 

resources, coastal protection, and biodiversity support.
5. Land Use and Emissions
• In 2005, 63% of emissions were the result of land use change and peatland 

degradation. Mangrove forests are also threatened.
6. Deforestation and Loss
• The average annual net loss of forest is 685,000 hectares. Forests are lost 

through deforestation, biodiversity loss, and affecting the livelihoods of 
forest-dependent communities.

7. Future Goals
• By 2030, Indonesia aims to restore 2 million hectares of degraded peatland 

ecosystems.

Visual Elements
• Icons: The infographic uses icons of trees, forests, and other related imagery 

to visually represent the information.
• Colors: Predominantly green, symbolizing nature and forests, with white 

and brown accents for text and details.

Conclusion
The infographic emphasizes the critical role of forests in Indonesia, the threats 
they face, and the country's efforts to address these issues through sustainable 
practices and restoration goals.

PVC (image repeat ×	𝟒):
The image is an infographic related to Goal 15 of the Sustainable Development Goals (SDGs), which focuses on 
Life on Land. The infographic provides information about Indonesia's forests and peatlands, emphasizing the 
importance of forest conservation and restoration. Here is a detailed breakdown of the content:

Title and Goal
• SDGs FACTSHEET
• INDONESIA
• Goal 15: Life on Land

• Protect, restore, and promote the sustainable use of terrestrial ecosystems, sustainably manage forests, 
combat desertification, halt and reverse land degradation, and halt biodiversity loss.

Key Points
1. Forest Area
• There are 91 million hectares of forests in Indonesia, covering just over half of the country's total land area.
2. Archipelagic and State by Area
• Indonesia is the largest archipelagic and 15th biggest state by area in the world. It has a significant impact on 

the world's climate conditions.
3. Dependence on Forests
• Indonesia is home to the third largest tropical forests. 48.8 million people in Indonesia directly depend on 

forest (or forest ecosystem services) for their livelihood.
4. Peatlands
• Peatlands cover an estimated 14.9 million hectares, or nearly 8%, of Indonesia's total land area. Tropical 

peatlands are home to important biodiversity and a highly effective natural terrestrial carbon storage system.
5. Mangrove Forests
• Indonesia is home to more than 20% (2.2 million hectares) of the world's mangrove forests. Mangrove forest 

ecosystems nurture fishery and forest resources, mitigate coastal disasters, and climate change, provide 
multiple ecosystem services, and eco-tourism opportunities, and accommodate biodiversity.

6. Emissions and Degradation
• In 2005, 63% of emissions were the result of land use change and peat fires.
• The average annual net loss of forest between 2010 and 2015 was 685,000 hectares. Forests are lost through 

deforestation, endangering globally important biodiversity and affecting the livelihoods of forest-dependent 
communities.

7. Future Goals
• By 2030, Indonesia aims to restore 2 million hectares of degraded peatland ecosystems.

Visual Elements
• The infographic includes icons of trees, forests, and peatlands.
• It uses a green color scheme to emphasize the environmental focus.
• The United Nations Sustainable Development Goals logo is present at the bottom left.

Conclusion
The infographic highlights the critical role of forests and peatlands in Indonesia, emphasizing the need for 
sustainable forest management and restoration to combat deforestation, land degradation, and biodiversity loss. 
It underscores the interdependence of local communities on forest ecosystems and the global impact of 
Indonesia's forests on climate conditions.

User: What is the content in this picture?

Image Progressive Encoding

Figure 4. PVC achieves image progressive encoding. The image is repeated once (left) and four times (right). Supplementary contents
are marked in blue, incorrect contents in red, and corrected contents in green.



InternVL2-8B:
In the video, the purple metal sphere and the red metal sphere collide. The red metal sphere and the cyan rubber sphere collide. The gray metal cube and the cyan rubber sphere 
collide. The gray metal cube and the red metal sphere collide.

PVC-8B (ours):
The video shows a series of interactions between different objects. Initially, there are three objects: a purple sphere, a gray cube, and a cyan cube. The purple sphere and the gray 
cube are stationary. Then, a red sphere enters the scene and collides with the cyan sphere, causing the cyan sphere to move away. The red sphere continues to move and 
eventually collides with the purple sphere, causing the purple sphere to move. The gray cube also moves slightly due to the collision with the cyan sphere. Finally, the red sphere 
and the cyan sphere exit the scene, leaving the gray cube in its new position.

User: Describe the collisions in the video in detail.

Video Dynamic Capture

Qwen2-VL-7B:
The video shows a sequence of collisions between different colored spheres and cubes on a flat surface. Initially, there are three objects: a purple metallic sphere, a gray metallic 
cube, and a cyan metallic cube. A cyan rubber sphere enters the scene and collides with the purple sphere. The purple sphere then collides with the gray cube. The cyan rubber 
sphere collides with the red metallic sphere, which then collides with the purple sphere. The purple sphere collides with the gray cube. The cyan rubber sphere collides with the 
gray cube. The red metallic sphere collides with the gray cube.

1 2 3 4

5 6 7 8

LLaVA-OneVision-7B:
The video shows a sequence of geometric shapes, specifically spheres and cubes, that are arranged on a flat surface. The shapes come in different colors: purple, red, cyan, and 
gray. The objects move around the surface, with some colliding with each other. Starting from the beginning, there is a single purple sphere visible. As the video progresses, more 
objects appear, including a red sphere, a gray cube, and a cyan sphere. The objects move independently for a while before they start to interact. One notable collision occurs 
when the gray cube collides with the cyan sphere. This collision causes both objects to change their positions slightly. Following this, the red sphere moves towards the gray cube 
and appears to make contact, causing the gray cube to shift position again. The video continues with the red sphere moving away from the gray cube and the cyan sphere 
remaining stationary. The purple sphere is also visible but does not seem to be involved in any collisions at this point. Towards the end of the video, the red sphere moves closer 
to the gray cube once more, and it looks like it might collide with it again. However, the red sphere stops short of making contact, leaving the gray cube in its original position.

Figure 5. PVC effectively captures spatiotemporal dynamics in videos. Correct descriptions of the movements and interactions of the
objects are marked in blue, while incorrect descriptions are marked in red. For visualization, we select the above 8 key frames from the
video, while the entire video is fed into the models.
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