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Supplementary Material

In this supplementary document, we present additional

materials not included in the main manuscript due to page

limitations. The supplementary content is outlined:

• Sec. A: Additional attention comparison between the pro-

posed method and previous works.

• Sec. B: Ablation studies on different ViT backbones.

• Sec. C: Extension on other CLIP-like models.

• Sec. D: Inference efficiency analysis of designed models.

• Sec. E: More segmentation visualization results.

Now, we will present these materials as follows.

A. Attention Comparison

To further illustrate the impact of ResCLIP on attention

mechanisms beyond examples shown in Fig. 3 in main

paper, we present additional attention visualizations in

Fig. A1. These visualizations demonstrate how our method

enhances the attention maps across different training-free

open-vocabulary semantic segmentation (OVSS) models

so that our method could better aggregate information

from previous layers. From Fig. A1, we can observe

that our ResCLIP could attend to regions sharing similar

class-specific features while previous works usually exhibit

spatial-invariant features or focus on the local patches.

In particular, after integrating our Residual Cross-

correlation Self-attention (RCS) and Semantic Feedback

Refinement (SFR) modules into existing works, the atten-

tion maps show two key improvements: 1) enhanced local

patches awareness and 2) strengthened global semantic cor-

respondence. For example, in the left part of Fig. A1, we

observe that previous works fail to effectively capture fea-

tures from other “sheep” instances while our method can

not only capture information from semantically consistent

objects but also maintain local consistency. Similar phe-

nomena can be observed from the right example in Fig. A1.

Moreover, we can see that intermediate layers (e.g., layers 5

and 11) show decent class-specific feature correspondence

ability, which motivates us to incorporate them to remold

the attention in the last block of CLIP.

B. Ablation Studies on ViT Backbones

In the main manuscript, we demonstrate effectiveness of

the proposed RCS and SFR modules on ViT-B/16 back-

bone. To further demonstrate their generalization on other

ViT backbones, we conduct additional experiments of abla-

tion studies across ViT-B/16, ViT-B/32, and ViT-L/14 back-

bones. Moreover, we also evaluate our ResCLIP method by

integrating it with previous training-free counterparts, i.e.,

SCLIP [45], ClearCLIP [27], and NACLIP [18].

The experimental results are shown in Table A1. We can

see that both RCS and SFR modules contribute substan-

tially to performance improvements across multiple back-

bones and baselines, demonstrating the great generaliza-

tion of our proposed modules. Specifically, taking NACLIP

with ViT-B/16 as an example, Our RCS improves the av-

erage mIoU from 39.4% to 40.6%, while SFR increases it

to 40.7%. When combining both modules, the performance

further improves to 41.4%, suggesting complementary ben-

efits from both components. Similar patterns are observed

with other baseline methods.

Notably, our method demonstrates robust performance

across different backbone architectures. For instance, when

applied to SCLIP with ViT-L/14, ResCLIP significantly

improves the average performance from 26.2% to 37.0%,

showing particular effectiveness on larger architectures.

The improvement is consistent across datasets both with

and without a background class. Specifically, ViT-B/16

achieves 43.2% mIoU on datasets with a background class,

showing a 1.8% mIoU improvement over NACLIP base-

line, and 40.3% mIoU on datasets without a background

class, with a 2.1% mIoU improvement. These comprehen-

sive results validate that our proposed modules effectively

enhance dense prediction capability of CLIP across various

architectures and dataset configurations, demonstrating the

robustness and generalization ability of our approach.

C. Extension on other CLIP-like Models

In the main paper, we evaluate our method by integrating it

with existing approaches, which are typically improved ver-

sions based on the vanilla CLIP model. To further evaluate

the effectiveness of our method on other CLIP-like models,

we conduct additional experiments on the OpenCLIP [10].

For a fair comparison, we first reproduce the results of

SCLIP [45], ClearCLIP [27], and NACLIP [18] on Open-

CLIP [10]. Then, we implement the proposed method based

on the OpenCLIP [10]. As shown in Table A2, we present

the comprehensive results on datasets without a background

class. We can observe that our method shows consistent im-

provements over different baseline approaches, demonstrat-

ing its effectiveness.

Specifically, when integrating SCLIP [45] with our

method, ResCLIP achieves significant gains across all

datasets, improving the average performance by 1.6%

mIoU. The improvement is particularly pronounced on

VOC20, where ResCLIP enhances the mIoU from 66.6%

to 71.8%. Most notably, integrating ResCLIP with NA-

CLIP [18] yields substantial improvements across all
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Figure A1. Additional comparison of attention maps across CLIP [37], SCLP [45], ClearCLIP [27], NACLIP [18], and ours. The attention

maps of non-last layers show the localization properties and can heal the attention in the last layer. The red point serves as the source point

from which the attention map is computed and visualized.

Table A1. Ablation studies of our proposed modules in ViT-B/16, ViT-B/32 and ViT-L/14 backbones. Our ResCLIP setting is marked in

gray . The best result on each dataset is bolded. The Avgw/o means the average mIoU for datasets without a background class, Avgw/

means the average mIoU for datasets with a background class, and Avg. means the average mIoU for all eight datasets.

Methods
Module ViT-B/16 ViT-B/32 ViT-L/14

RCS SFR Avgw/o Avgw/ Avg. Avgw/o Avgw/ Avg. Avgw/o Avgw/ Avg.

SCLIP [45] - - 37.1 40.0 38.2 32.1 36.2 33.6 23.6 30.5 26.2

+ResCLIP(Ours)

✓ 38.8 42.4 40.2 34.6 36.9 35.4 36.6 36.9 36.7

✓ 37.9 42.0 39.4 32.2 36.4 33.8 28.9 30.5 29.5

✓ ✓ 39.3 42.7 40.5 34.8 37.1 35.7 36.7 37.4 37.0

ClearCLIP [27] - - 37.5 39.1 38.1 34.8 35.6 35.1 34.5 35.5 34.9

+ResCLIP(Ours)

✓ 39.7 41.6 40.4 35.3 35.7 35.4 38.3 36.7 37.7

✓ 39.4 41.7 40.2 35.1 35.8 35.3 37.0 36.2 36.7

✓ ✓ 40.0 42.0 40.7 35.5 35.9 35.6 38.4 37.2 37.9

NACLIP [18] - - 38.2 41.4 39.4 34.4 37.0 35.4 36.2 36.9 36.5

+ResCLIP(Ours)

✓ 39.7 42.2 40.6 35.7 37.3 36.3 38.4 38.2 38.3

✓ 39.3 42.9 40.7 35.7 37.4 36.3 37.4 38.4 37.8

✓ ✓ 40.3 43.2 41.4 36.2 37.5 36.7 39.1 39.2 39.1



Table A2. Quantitative comparison on datasets without a background class based on OpenCLIP [10] with ViT-B/16 architecture. Our

results are marked in gray . The best results on each dataset are bolded. Results show that our method is also effective on other VLMs.

Methods VOC20 Context59 Stuff Cityscape ADE20k Avg.

OpenCLIP [10] 47.2 9.0 5.0 5.1 2.9 13.84

SCLIP [45] 66.6 31.7 21.2 31.4 18.5 33.9

+ResCLIP(ours) 71.8 32.9 21.9 31.9 18.8 35.5 (+1.6)

ClearCLIP [27] 81.4 34.1 23.1 31.8 18.9 37.9

+ResCLIP(ours) 83.3 34.3 23.1 32.3 19.1 38.4 (+0.5)

NACLIP [18] 76.2 30.3 20.3 32.3 17.6 35.3

+ResCLIP(ours) 82.5 33.0 22.2 32.9 19.0 37.9 (+2.6)

datasets, with an impressive average gain of 2.6% mIoU,

including a remarkable 6.3% improvement on VOC20

datasets from 76.2% to 82.5%. These consistent improve-

ments across different CLIP models and datasets demon-

strate the generalization of our approach. The results also

validate that the observation of our proposed method is ef-

fective on other CLIP-like models.

D. Inference Efficiency Analysis

The additional inference time introduced by our method

is limited, as all operations only adjust attention in the

final layer. Specifically, RCS computes the average of

intermediate-layer attentions already generated during in-

ference, while SFR performs lightweight mask adjustments

in the final layer of CLIP. Using a single RTX 3090 GPU

with batch size 1, input resolution of 336×336, and fp16

half precision, our experimental evaluation shows negligi-

ble impact on inference speed across all models. As shown

in Table A3, our enhancements increase total FLOPs by less

than 7%. Moreover, RCS demonstrates negligible over-

head, while implementation of SFR can be further opti-

mized to improve efficiency.

Table A3. The Speed and FLOPs comparison of different methods

on VOC 20 using CLIP-ViT-B/16 backbone. All the experiments

are conducted on a single RTX 3090 GPU. IPS: Image Per Second.

Metrics CLIP NACLIP +RCS +SFR +ResCLIP

Speed (IPS) ↑ 32.8 32.3 30.5 29.3 28.9

FLOPs (G) ↓ 41.7 41.8 42.0 44.6 44.8

E. Additional Visualization Results

We present additional qualitative comparisons across

ADE20K [58], COCO Object [7], and PASCAL VOC [16]

datasets in Fig. A2, Fig. A3, and Fig. A4 to further demon-

strate the effectiveness of our ResCLIP, respectively. Com-

pared to existing methods, our approach usually presents

better quality in terms of the semantic segmentation masks.

From these qualitative results, we can have the following

observations: 1) Our method generates significantly cleaner

segmentation masks with reduced noise artifacts. This im-

provement is particularly evident in complex scenes from

ADE20K, where ResCLIP maintains coherent building seg-

mentation without the internal hollows or fragmentations

commonly seen in other baselines (i.e., the 1-st col. in

Fig. A2). The enhanced segmentation quality extends to di-

verse scenarios, such as the precise delineation of vehicles

in parking lots and the clear separation of multiple instances

in crowded scenes (i.e., the 2-nd and 4-th col. in Fig. A2).

2) ResCLIP presents superior performance in handling mul-

tiple object instances, demonstrating its enhanced spatial-

semantic understanding. For example, in the COCO Ob-

ject dataset (see Fig. A3), our method accurately segments

groups of animals while maintaining clear boundaries be-

tween individuals(i.e., the 4-th and 5-th col. in Fig. A3).

This capability stems from the improved attention mech-

anism of our ResCLIP, which better captures both global

spatial relationships and local feature consistency. 3) Our

method handles varying scales and perspectives better. As

shown in Fig. A4, our method produces consistent segmen-

tation quality across both indoor and outdoor scenes. These

qualitative results validate the effectiveness of our proposed

RCS and SFR modules in enhancing dense prediction capa-

bilities of CLIP.
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Figure A2. Additional qualitative visualization results among different CLIP-based training-free segmentation methods on ADE20K [58]

dataset.
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Figure A3. Additional qualitative visualization results among different CLIP-based training-free segmentation methods on COCO Ob-

ject [7] dataset.
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Figure A4. Additional qualitative visualization results among different CLIP-based training-free segmentation methods on PASCAL

VOC [16] dataset.
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