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A. More Discussions on Anisotropic Gaussians
v.s. Isotropic/Spherical Gaussians

The traditional 3D Gaussian Splatting and its subsequent
research mainly center on the technique of ‘Splatting’,
which involves utilizing different anisotropic Gaussian
splats to accurately represent the entire scene on a global
scale. However, our work focuses on each ‘Gaussian’ itself,
essentially displaying a reverse process: decomposing the
entire ‘Splatting’ into small ‘atoms’ (atoms can form ev-
erything) and assigning convenient geometrical meanings
to every individual Gaussian.

Let’s draw an analogy in mathematics—a specific
function f(x) can be effectively approximated using
polynomials—x0, x1, x2, xk...xn, each term with coeffi-
cient holds distinct algebraic property (anisotropy). But
f(x) can also be transformed in its Fourier expansion,
where all terms share the same form of trigonometric func-
tions (isotropy), with only variations in frequency. Uniform
characteristics often reveal the deeper essence of things.

Our Spherical Gaussians choose a fixed radius to reg-
ulate the scale and rotation properties for all Gaussians,
similar to resetting a basis function. Given the isotropic
property, the gradients from the Gaussian rasterizer can be
concentrated more on optimizing the splitting and position-
ing of each Gaussian. The global structure decomposed
by these Gaussian bases is highly interpretable, with each
Gaussian having a clear geometric meaning.

In fact, the degree of freedom in 3D Gaussian Splatting
is large, as one scene can be represented by completely dif-
ferent sets of Gaussians. By fixing specific properties of
Gaussians and restricting the splatting gradients to optimiz-
ing other attributes (similar to base transformations intrin-
sically), the process of optimizing scene representation still
works, but it results in different explanations. A thin and
elongated Gaussian seems to be more efficient in represent-
ing curves, but it can be split into smaller ‘basis-Gaussians’
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with few sacrifices but for better interpretation and conve-
nience in certain tasks. Similarly, one can develop a sophis-
ticated method to handle various anisotropic Gaussians for
a specific task, but this inevitably come at the expense of
robustness and generalization.

Currently, the full potential of explicit representation in
3D Gaussian Splatting has not been fully exploited. The
core of our work is to provide meaningful interpretations
to Gaussians through scenes, rather than overfitting scenes
with arbitrary Gaussians. This transformation sets our work
apart from others. Particularly, our method explores the uti-
lization of isotropic bases—Spherical Gaussians—in curve
reconstruction tasks, which turn out to be both efficient and
structured. The isotropic and structured nature of Spherical
Gaussians also provides significant advantages when cor-
related with today’s advanced 3D manipulation techniques,
such as point cloud processing methods (Gaussian attributes
viewed as isotropic point features). Once the explicit rep-
resentation property of 3D Gaussian Splatting aligns with
appropriate geometrical meanings, it will spark great conve-
nience for numerous tasks, far beyond curve reconstruction.
We hope that our work can bring some insight to perceive
the true sense and potential of 3D Gaussian Splatting.

B. Visual Differences between Gaussians

Figure 1. Visual differences between original 3D Gaussian Splat-
ting [2] and our Spherical Gaussians.
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In our main paper, we have presented the quantitative
results of ablation experiments on the design of Spherical
Gaussians. Here, we visually compare the differences be-
tween the original 3D Gaussian Splatting [2] and our Spher-
ical Gaussians. Results are shown in Figure 1. Although
trained with edge maps, 3D Gaussian Splatting produces
Gaussians in shape of various ellipsoids containing signif-
icant noise and low opacity values (the dark ellipsoids),
making it quite inconvenient for geometric reconstruction
tasks. However, our Spherical Gaussians are well aligned
and neat, preserving the details of 3D structures and mak-
ing edge reconstruction quite convenient. This accounts for
the significant enhancement in 3D edge reconstruction met-
rics (as presented in Table 2 of our main paper). Spherical
Gaussians may serve as a great tool for connecting 2D and
3D modalities, and further exploration into their capabilities
is worthwhile.

We provide another experimental analysis on anisotropic
Gaussians that is thin-shaped with one axis having small co-
variance. Fig. 2 illustrates the comparison results. Isotropic
Gaussians provide a more favorable point cloud distri-
bution, yielding better results in our curve fitting stage.
Anisotropic Gaussians are featured in image rendering, but
are less convenient for geometry reconstruction tasks.

C. Pseudo Code of Global Optimization

We present the pseudocode of Part2—Global Optimization
of our SGCR method in the main paper. It is shown in Algo-
rithm 1. This part takes the line endpoints from Part1—Line
Fitting and our Spherical Gaussians as input, and optimizes
them into control points (with weights) of 3rd order rational
Bézier curves to achieve the final 3D edge reconstrution.

Algorithm 1 Part2—Global Optimization
Input: a set of Spherical Gaussians G with radius r0, and
the endpoints results L = {(pi, qi)}|L|

i=1 from Part 1.
Output: the set of control points C = {{zji , w

j
i }4j=1}

|L|
i=1

of 3rd order rational Bézier curves.
Denote: B(u)p,w is the function of rational Bézier curve.

1: Lall = ∅
2: for i = 1 to |L| do
3: (pi, qi) = Li, ωi = (1, 1, 1, 1)
4: zi = (pi,

3
4pi +

1
4qi,

1
4pi +

3
4qi, qi)

5: Li = interpolate(B(u)zi,wi
, Ns) + r0 ∗N(0, 1)

6: Lall = Lall ∪ Li

7: end for
8: C = argmin

{{zj
i ,w

j
i }4

j=1}
|L|
i=1

LWCD(Lall, P (G))+λLendpoints

9: return C;

D. More Discussions on Opacity-Color Loss
The opacity attribute of isotropic Gaussians can effectively
encode the concept of ”edge density.” Opacity-color loss
helps to keep consistency between edge density and color
intensity during multi-view optimization. This mechanism
ensures that occluded edges—represented by Gaussians
with low opacity values—are less susceptible to premature
pruning during optimization, resulting in more complete 3D
reconstructions. Fig. 3 illustrates the visual ablation results
on opacity-color loss.

E. Metrics
To compute the metrics, we densely sample points from
ground-truth edges (denoted as Xgt) and the predicted
curves (denoted as Xpd).
Chamfer Distance (CD). The Chamfer distance is com-
puted using:

CD =
1

2
(Comp.+Acc.),

Comp. =
1

|Xgt|
∑

xgt∈Xgt

min
xpd∈Xpd

||xgt − xpd||,

Acc. =
1

|Xpd|
∑

xpd∈Xpd

min
xgt∈Xgt

||xpd − xgt||

F-Score (FS). The F-Score is defined as follows:

FS =
2 · Precision ·Recall

Precision+Recall
,

where

Precision =
|{xpd ∈ Xpd|minxgt∈Xgt

||xgt − xpd|| < ξ}|
|Xpd|

,

Recall =
|{xgt ∈ Xgt|minxpd∈Xpd

||xpd − xgt|| < ξ}|
|Xgt|

We use ξ = 0.02 for all experiments.
Intersection over Union (IoU). Noting TP (resp. FP and
FN) the number of true positive, i.e. the number of points
correctly predicted as full (resp. the number of points
wrongly predicted as full, and the number of points wrongly
predicted as empty), the IoU is defined as follows:

IoU =
TP

TP + FP + FN

F. Evaluation on 2D Edge Detectors
Our method requires edgemaps obtained by applying 2D
edge detectors on multi-view input images. The quality
of 2D edge detection will affect our final 3D edge recon-
struction results. Therefore, we also conduct experiments



Figure 2. Comparisons between anisotropic Gaussians and Spherical Gaussians

Figure 3. Visual ablation results on opacity-color loss

to evaluate our performance under different 2D edge de-
tectors. We choose three state-of-the-art 2D edge detec-
tion methods—DexiNed [6], PiDiNet [7] and MuGE [11]
to generate edgemaps on the same input images from ABC-
NEF [10] dataset. Our method reconstructs similar results
across these three 2D edge detectors, and the detailed quan-
titative comparisons are shown in Tab. 1. More advanced
2D edge detection methods (like MuGE) will also benefit
our method.

For fair comparisons with NEF [10] and EMAP [5], we
choose PiDiNet [7] as the main edge detector for experi-
ments in our main paper.

Table 1. Quantitative comparisons on different 2D edge detectors.
Methods includes DexiNed [6], PiDiNet [7] and MuGE [11].

Edge Detector CD↓ Precision↑ Recall↑ F-score↑ IoU ↑
DexiNed [11] 0.0276 0.9686 0.8748 0.9159 0.8383
PiDiNet [7] 0.0280 0.9546 0.9052 0.9260 0.8615
MuGE [6] 0.0250 0.9787 0.8955 0.9324 0.8643

G. Parameters for Different Data Scale

Our basic parameter settings (e.g., r0 = 0.005, δ1 = 0.02)
are designed for unit cube spaces [0, 1]3 based on the ABC-
NEF[10] dataset. For larger scenes with a boundingbox N ,
we can either downscale the scene and adopt basic settings,
or simply scale these parameters, e.g. r′0 = N · r0. This
modification works well across other datasets, as demon-
strated by our results.

H. More Comparisons

More visual comparisons on ABC [4] and Modelnet [8]
models are shown in Fig. 4.

We also test our method on the more challenging real-
world outdoor scenes from Tanks&Temples [3] dataset. All
previous methods have failed except EMAP [5]. The visual
results are illustrated in Fig. 5. Our method performs signif-
icantly better than EMAP [5]. EMAP takes about 12 hours
for training a single scene in Tanks&Temples [3], while our
approach finishes within 3 minutes.



Figure 4. More qualitative comparisons results on curve reconstruction. From left to right, we present the rendered image, the results of
RFEPS [9], NerVE [12], NEF [10], EMAP [5], our Spheical Gaussians, our final curves and the ground truth edges. Models come from
ABC-NEF [10] dataset and ModelNet [8] dataset.

Figure 5. Visual results of edge reconstruction on the challenging real-world outdoor scenes from Tanks&Temples [3] dataset.



I. Limitations
In order to encourage further research in this area, we will
discuss some limitations of our method and also suggest po-
tential directions for future exploration.

Camera calibration. Although our method is robust to
minor errors in camera poses, when it comes to reconstruct-
ing real scenes, the inaccurate estimation of camera poses
will still bring drawbacks on generated Spherical Gaussians
as well as the following reconstruction. It would be worth-
while to explore pose-free methods (as suggested in [1]) for
training Gaussians to make the reconstruction process more
robust and convenient.

Textured object. 3D edges are exactly located in areas
where the normal changes abruptly, while 2D edges encom-
pass a broader range of edge types, such as shadow and sur-
face texture. Objects with intricate textures may introduce
noise on 2D edge maps, which can in turn affect the dis-
tribution of Spherical Gaussians and the accuracy of curve
reconstruction. The noise can be reduced by identifying
which edge pixels are caused by texture discontinuity in 2D
level and by locating object surfaces to distinguish Spheri-
cal Gaussians that represents textures in 3D level.

Inner edges. Since our method relies solely on 2D super-
vision, it is unable to produce Spherical Gaussians for hid-
den edges within the object that are not visible, thus limiting
the reconstruction of inner curves. To overcome this limi-
tation, additional 3D cues, such as point clouds, meshes, or
shape priors, can be integrated. As an explicit representa-
tion, Spherical Gaussians have the potential to tackle multi-
modal tasks effectively.
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