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7. Novelty Summarization

Our work goes beyond a simple theoretical extension of the
existing MDD in three key aspects. First, we expand upon
MDD by introducing a newly defined robust divergence to
derive an upper bound of the target domain robust risk that
does not use adversarial samples in the source domain. In-
stead, the robust divergence measures the distance between
distributions of clean examples in the source domain and ad-
versarial examples in the target domain and thus we can save
computation times for generating adversarial samples in the
source domain. Moreover, an interesting property of TAROT
is that the trained model is robust not only on the target
domain but also on the source domain (see Proposition 3 in
Section 7.3 in Appendix for theoretical evidence and Table
3 in Section 5.1.2 for empirical evidence) even if no adver-
sarial samples in the source domain are used in the training
phase. Note that the replacing Rs with Rg’b also becomes
an upper bound, but it is a looser bound than ours since
Rs(f) < RE(f). Second, the local Lipschitz constant,
a newly introduced term, provides a theoretical bridge to
existing research on adversarial robustness [42, 43]. Finally,
by offering a partial theoretical explanation of the existing
robust UDA algorithms, we integrate the previous works and
pave a new direction for robust UDA, highlighting novel
approaches and potential advancements in the field. Hence
we believe that our bound is cleverly devised for robust UDA
beyond a simple extenstion of MDD.

8. Theoretical Results

8.1. Auxiliary Lemmas

Lemma 1 (Lemma C.4 from Zhang et al. [45], Theorem 8.1
from Mehryar Mohri and Talwalkar [23]). Let F C RY*Y
be a hypothesis set of score functions where Y = {1,...,C}.
Define

IWF ={x— flz.ylyed, feF}

and fix the margin parameter p > 0. Then for any § > 0,
with probability at least 1 — 0, the following inequality holds
forall f € F.

202 log 2
RY(f) - RY(f)] < =R, p(ILF 8
Rp’(f) =Rz (NI < 5 p(ILF) +1/ =

Lemma 2 (Talagrand’s lemma [23, 33]). Letr® : R -+ R

be an I-Lipschitz function. Then for any hypothesis set H

of real-valued functions and any samples D of size n, the

following inequality holds:

Rp(®o H) < IR5(H)

Lemma 3 (Lemma 8.1 from Mehryar Mohri and Talwalkar
[23]). Consider k > 1 hypothesis sets Fi, ..., Fy in RY.
Let G = {max{hy,..., i} : h; € Fj,j € [1,1]}. Then for
any sample D size of n, the following holds:

l
R5(0) <Y Rs(F) @1
j=1

8.2. Proofs

Lemma 4. For any distribution D which (X,Y") follows,
and score functions f, f', the following inequality holds.

disp) (1. /) SRE () +RES)  (22)
Proof. We first show that the following holds.
Dpo Myp(X, hy(X)) < @popp (X, Y)+ 0,0 My (X,Y)

If hy (X') # Y or hy(X) # Y holds, then the right-
hand side is bigger than 1, consequently the inequality holds.
Now consider the case hy (X') = hy(X) = Y. Since
Q,0M (X', hy(X)) = ®,0M (X', Y) holds, the wanted
inequality holds.

Therefore, following inequality holds.

disp%), (', f)
= EXNDCI)p O Mf(X, hf(X))
< EXNDq)p o Py (X, Y) + EXND(I)p o Mf(X, Y)

= RE(F) +RE(f)
O

Proposition 1. Let S and T represent the distributions of
the source and target domains, respectively. Similarly, let
Sx and Tx denote the marginal distributions of the source
and target domains over X, respectively. For every score
function f € F, the following inequality holds:

RP(f) <
RE () + {dispye @ (£, ) = disp€) (£ )} + A

(7

where f* = argmin{R%f’)(f) + Rg’)(f)} is ideal hypoth-
fer

esisand A = N(F,S8,T,e,p) = Rgf)(f*) +Rgp)(f*) is
constant of f.

Proof. Since

1Y # h (X'
x'e%lf&,e){ # hp(X)}



< L{hs- (X) # hy(X'
< o lpax UMby (X) # By

)} + 1{hy-(X) # Y}
holds, we can start to derive the following inequalities.
R(f)
< disp'® (f*, f) + R7(f")
< disp " (% ) + RE ()
= disp (1%, ) + RE () + R” () -
< disp O (7, )+ RE () + RE ()
+RE(F) — disp&) (£, )
=R (f) + dispiy ) (£, f) = disp@) (£, f) + A

Here, the third inequality holds from Lemma 4 and A =
RP (1) +RE (). O
Lemma 5 (Part of Theorem C.7 from Zhang et al. [45]). For

a given distribution D, corresponding empirical distribution

23, and any § > 0, with probability at least 1 — 0, the
following holds forVf, f € F simultaneously.

displg) (1", f) = disp2) (', )|

20 log 2
< R, p (M F) + o
p 2n

—~

R(P) (f)

(23)

Lemma 6. For a given distribution D, its marginal distribu-
tion Dx, corresponding empirical distribution ﬁx, and any
6 > 0, with probability at least 1 — 0, the following holds
JorVf, ' € F simultaneously.

dispps ) (f', ) = disp (1", £)|

(24)
log 2
< E%n (T F) + 0g 3 n 2¢L¢(Dx,¢)
p 2n p
Proof. Denote f(x) = (f(z,1),..., f(x,0)T € R for

arbitrary & € X'. Note that @, is 1/p-Lipschitz, and the mar-
gin operator is 2-Lipschitz [5]. Hence, for V&' € B, (x,¢),
the following inequality holds.

|®, 0 My(x',y) — D, 0 My(x,y)|
< % M) — My ()|

2
< 2If@) - F@,

2
< —eL¢(Dx,¢)
p

Here we utilize the proof technique from Zhang et al. [45].
For Vf, f’ € F, define the 74/-transform of f as follows:

f(z, 1) ify = hyp(x)
T f(x,y) = fle, hp(x)) ify=1
[z, y) 0.W.

where hy is the induced classifier from f. Let § =

{rpfIf, /" € Fyrand G = {(z,y) — pylx,y)lg € G}
Now using these sets, we can represent the disparity terms
into risk terms. For any f, f' € F,letg = 74/ f.

Then,

pg(,1)

= pr/f(mv 1)

=7p f(2,1) — max7y f(z,y')
y'#1

~ flauhp (@) ~max{ max

= f(x, hy(x)) -

max f(x,y)
= Mg(x, hy(x))

) 1)}

Y/ Fhg (x)

holds.
Hence,

disppe” (1, f)

= EXNDX max

® X' hp (X
X/EBP(X,E) poMf( ? f( ))

2eLs(Dx, e
S EXNDX(Dp oMf(X, hf/(X)) -+ M

2€Lf(Dx, 5)

= Ex~px®p 0 py(X,1) + P

holds for g = 7/ f.
For arbitrary set of score functions ¢/, we define following
term:

R0 pU) = E(a, 1),0,~0RpU)

Regard all the data as from the same class 1. Then by us-
ing Lemma 1, the following inequality holds simultaneously
for any g € G, with probability at least 1 — 9,

EXN'DX‘I)P ° pg(X7 1)

~ log 2
SEx 5, Propg(X,1) + 29{%,73(4’ 0G)+ 2n5
Hence,
dlsprob (p)( / )

5Py 0pe(X,1) —|—29{ »(®0G)

/10g5 n 2eLy( DX, €)

‘Ppopf/ (X hf( ) + 2R9 (D 0 G)]

2
n ¢log5 " 2€Lf Dx, )

(Dp o pp (X', hy (X)) + 29‘{%79(@ °G)

<E, = max
= T XDxieB,(X,e)



llog 5 25Lf DX, £)

—chsp”" (’”( ")+ 2R p(@0G)

[log2  2¢L(D
+ g5_|_ € f( X,E)
2n p

holds. Now, we want to bound the term 9%2@
By Lemma 2,

(®0G).

holds. Also,

1
+-E5 sup o; < max f(x;,y )
” Do ferF, heHZ y#h(z;) (@i.y)

sup E o; max

1
= mmp(nq.[f) + 7EA
n 7 fer, heH y#h(z

xiay)

holds.
Define the permutation

i1 =1,
éh(l)_{1 i=C

As we assumed that  is permutation-invariant, we know
that for Vh € Hand j = 1,...
Let Ty F(€—Y = {max{f,...

-1

Jfooadfi € Oy F,i =

1,...,C -1}
Then,
E z )
-5 sup o; max f(x;,y
n Dya fEF heH Lyséh wz) ‘

f(wiafjh(wi»

je{l,...,k—1}

= lIE sup Zsz (x;)

n P EHH}_(C 1)7, 1
-1
< By, sw E:mf )
n re OuF ;-

holds, where the last inequality holds from Lemma 3. Hence,

R, p(9)

Jk— 1, &h € H holds.

C _ n
+——Ep, sup oif ()
D, fEHH}-;

< CR, p(IIyF)

holds.
Combining above inequalities, we have the following
inequality

dispi (1, f)
2

IO ! C
< dispﬁl;’(p)(f )+ 79%,1)(1_[%-7:)

S mn,D(HH]:)

log 2 2¢L;(Dx,e)
n .
2n 0

holds simultaneously for V£, f' € F with probability at least
1-0.

In the same way, we have the opposite direction by ex-
changing D and D. Therefore, the following holds simulta-
neously for Vf, f/ € F with probability at least 1 — §,

disppy (1", f) — displge (7', )]

2 log 2
< 709%,, (T F) + | 28

2€Lf('DX76)
+
2n p

concluding the proof.
O

Lemma 7. For any § > 0, with probability at least 1 — 6,
the following holds for all f € F.

RE () =R (f)

25)
202 log2  2¢Ls(Xx (
< g, (1, F) 4 | 285 LX)

p 2n p

Proof. We know that

2
|, 0 My(z',y) — @, 0 My(z,y)| < ;5Lf(DXa5)

holds for V&' € By(x, ¢).
Then, the following holds with probability at least 1 — 6.

rob,
R’D (P)(f)
=E P XY
L p o Ms(X,Y)
2eL (D
<Ep®, 0 Ms(X,Y) + 2eL;(Dx,¢)
p
2072 log2  2eL;(Dx,e)
<RY(f) + =R, p(I 2 LX
< D(f)+p o(ILF) + | 2 2L
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log2 2 L(Dx,¢) Theorem 1. (Generalization Bound on the Robust Risk
5 & 4 : of Target Distribution). For any § > 0, with probability
K P 1 — 39, we have the following uniform generalization bound

2

Ly 20 for any score function f in F :
<23 max @0 My(ahu) + R p(ILF
>~ nzlm,’iEBp(m,;,s) P f( 7 y) P }’D( 1 )

_|_

R (f)
log§  2cL;(Dx.e) <RO(f) +d7%7 (Sx. Tx) + A
an P 202 20 [log2/3
o
202 log? 2L;(Dx,e) | p Rn,s(MF) + p 5 T (M F) +2 an
:Rgm(p)(fHT%"D( )Gt fp | °C log2/6  2eL;(Ts
+ 7%m,T(HH‘F) + = / + : f( X’E)a
0 p 2m p
(16)
where A = min{Rg’—))(f) + Rép)(f)}.
Lemma 8. For any 6 > 0, with probability 1 — 26, the fer
following holds simultaneously for any score function f, Proof. From Eq. (9)
rob (SX>TX) mb,(p) (SXaTX)‘ R%qb(hf)
C < () rob, (p)
< —iﬁn s (IlyF) + mm 7 (Il F) (26) = RS (f) + df,}‘ (Sx,Tx) + A
2
) 2C? log 5
/1og5 \/@ 2L TX, &) <RE) + =R s(F) +[ =
+ AP (Sx, Tx) + A
Proof. From Lemma 6, we have
<RO(f) + 2, () + 1| 85
[disp3y (£, ) = s (. )| = p e 2n
rob, (0) 2¢
2C log2  2¢L+(Tx, +dy # (Sx,Tx)+— n,s (IIy F)
< 20, (M) + 1| 225 4 2L (T )
p 2n p 2
C (T F) + og 5 log log 5
Also, from Lemma 5, the following holds with probability +— 7 (I
atleast 1 — §
’ 2 L¢(Tx,
. L B (Txee)
disp) (', f) — disp?) (1", )|
S rob, rob, (
*— =R () + 78 T) +
2C log 5 202 2C
< 7mm S(HH}-) . + 7p R, S( 1}—) + 79%71,8 (HH}—)
Hence, 2C log2  [log2
R (T F) 24 5 [ 8
drob (p (SX’TX) rob (SX,TX)‘ p
+ 2eL¢(Tx,€)
. roo, 10l p
— | sup {dlspTi‘”(f’, 1) = disp (' )}
frer Here, the second inequality holds from Lemma 1 and the
rob (p) rob.(p) third inequality holds from Lemma 8. O
— sup {disp W (f, f) — disoT (), 5)} .
freF 8.3. Source Robusk Risk of TAROT
< Sup dispey 10b, () (f. f) - dlSprEb (P (f, f)‘ In this section, we derive an upper bound for the robust risk
fre on the source domain. The components of following upper
. 10b,(p) [ g1 rob, (p) / ¢1 bound — standard source risk and robust disparity — corre-
+ fs,lé% dispr (/50 = dlSp (51 )‘ spond to the upper bound in Proposition 1, suggesting that
our algorithm can effectively improve adversarial robustness
holds, concluding the proof. O on the source domain.



Proposition 3. Consider a source domain S, a target do-
main T and their marginal distributions Sx, Tx on X . For
every score function f € F, the following inequality holds:

+ 2eL¢(Sx,¢)

RE(f) < RV (f)+2d75) (Sx, Tx) A

(27)
where \ = %12{R§f)(f) + ng”)(f)}
Proof.
RS (f)
< RYP(F) +disp3 (77 ) — dispf) (77 ) + A
< R (f) + dispL) (£, f) — disp2) (f*, f)

91
4 ELiSxe) |y

< RE(f) +2displ) (£, ) — disp'e) (f*, f)

%L
4 EL(SxE) |y

QELf(Sx, E)
p

<RE(f) + 24757 (Sx. Tx) + +A

Here, the first inequality holds by replacing S and 7 from
Proposition 1. O

Note that since the upper-bound considers the local Lips-
chitz constant on the source domain, this is a partial explana-
tion for the source robust risk.

9. Further Details on Experiments

Loss The exact forms of Eq. (20) loss function are as fol-
lows:

lee (T o) (), y)) = —log oy (m o Y(x)),

lrodee (T 09) (@), 1)) = log(1 — oy (1 0 (a"™))),
e (mow)(x),y)) = —log oy (m o (a"™)),

where o, denotes the predictive confidence for class y, i.e.,
the y-th component of the softmax output and " is the
adversarial example.

Datasets Office-31 consists of 4,110 images from three
domains — Amazon (A), Webcam (W), and DSLR (D) —
considered to be classical data for domain adaptation due
to the differences in image quality and capture methods.
Office-Home is more diverse, with 15,588 images across
four domains — Art (Ar), Clipart (Cl), Product (Pr), and
Realworld (Rw) — covering different styles, from artistic
drawings to real photos. VisDA2017 features over 280,000
images, focusing on the domain gap between synthetic and
real images, providing a challenge for algorithms to han-
dle synthetic (S) to real (R) adaptation. DomainNet is the

largest and challenging dataset, containing around 600,000
images from six domains, including Clipart (C), Infograph
(D), Sketch (S), Painting (P), Quickdraw (Q) and Real (R).

Hyperparameters We follow the default experimental set-
tings of TLIib [18]. We conduct experiments using the fol-
lowing training configuration. Models are trained for 20
epochs with a weight decay of 5 x 10~*. Robust pretraining
issetate = %5 for TAROT, PL, ARTUDA, and SRoUDA,
while RFA uses models trained with different € values identi-
cal to evaluation ¢, as it does not directly generate adversarial
examples during training. We conduct experiments using the
following training configuration. Models are trained for 20
epochs with a weight decay of 5 x 10~*. Robust pretraining
issetate = % for TAROT, PL, ARTUDA, and SRoUDA.
In contrast, RFA utilizes models trained with different &
values matching the evaluation ¢, as it does not directly gen-
erate adversarial examples during training. For TAROT, PL,
ARTUDA, and SRoUDA, the step size during training is
defined as ;3 5==, with 10 steps per iteration. For model
selection, we evaluate using PGD20 with ¢ and the same
step size of ;- 5=¢, using a batch size of 32. Optimization
is performed using SGD with a momentum of 0.9, a weight
decay of 5 x 10™%, and an initial learning rate of 0.005.
These settings ensure consistency and robustness across all

algorithms under evaluation.

10. Additional Experimental Results

Here, we present experimental results that were not included
in the manuscript. Additionally, we perform supplemen-
tary experiments to further support the effectiveness of our
proposed method, TAROT.

10.1. Essentially Domain-Invariant Robustness

In Table 3, we present partial performance results of PL
and TAROT on the source and unseen domains on Office-
Home dataset, when ¢ = 8/255. Here, we present the
unreported values in Table 6. In Table 6, we observe that
TAROT consistently outperforms its competitors in terms
of robust accuracy, as shown in Table 3. The only notable
competitor in terms of standard accuracy is RFA. However,
its robust accuracy is significantly lower than that of TAROT.
Furthermore, TAROT outperforms other methods, across
all metrics except ith only a few exceptions. In summary,
TAROT demonstrates superior performance on both source
and unseen domains compared to its competitors, owing to
its ability to learn essentially domain-invariant robust fea-
tures.

10.2. Effect of Robust-PT on Various ¢

We present the previously unreported values from Figure 3
for the OfficeHome dataset. In Table 10, we provide the
standard and robust accuracies of PL and TAROT across
varying values of €, both with and without Robust-PT. No-
tably, TAROT with Robust-PT consistently outperforms



Table 6. Performances of PL and TAROT on Source Domain and Unseen Domain, on OfficeHome. Standard accuracy (%) / Robust
accuracy (%) for AA with e = 8/255. Bold numbers indicate the best performance.

Source Unseen
Method Ar — Pr(Ar) Ar — Pr(Cl) Ar — Pr(Rw) Avg.
ARTUDA 62.59/8.53 29.46/11.02 32.29/7.30 41.45/8.95
RFA 99.63/37.33 40.21/18.05 60.29/19.05 66.71/24.81
SRoUDA 22.46/5.11 31.32/15.92 41.57/1591 31.78 /12.31
PL 24.68/10.88 35.51/24.72 43.84/25.25 34.68/20.28
TAROT 98.31/43.02 43.05/27.15 56.14/27.77 65.83 / 32.65
Pr — Ar(Pr) Pr — Ar(Cl) Pr — Ar(Rw) Avg.
ARTUDA 66.16 /23.00 20.87/7.45 24.08/5.90 37.04712.12
RFA 96.71/67.20 40.02/17.82 59.79/19.37 65.51/34.80
SRoUDA 59.21/50.89 40.82/22.12 41.91/21.00 47.31/31.34
PL 45.21/27.01 33.47/22.09 44.60/23.07 41.09/24.05
TAROT 96.33 / 78.69 40.12/ 25.68 54.35/28.21 63.60 / 44.19
Cl — Rw(Cl) Cl — Rw(Ar) Cl — Rw(Pr) Avg.
ARTUDA 84.77 /55.81 14.34/3.21 27.26/13.99 42.12/24.34
RFA 95.35/84.01 40.38 / 8.82 54.86/22.19 63.53/38.34
SRoUDA 48.29/35.58 33.87/15.62 48.19/33.09 43.45/28.10
PL 48.75 /1 35.95 36.30/16.69 50.80/35.66 45.28/29.43
TAROT 93.65 / 84.35 39.72/17.18 55.46 / 37.67 62.95/ 46.40
Rw — CI(Rw) Rw — Cl(Ar) Rw — CI(Pr) Avg.
ARTUDA 85.40/22.08 31.64/5.15 51.59/718.72 56.21/15.32
RFA 99.59 /38.54 46.90 / 7.50 64.79 /23.36 70.42/23.13
SRoUDA 38.72/15.84 21.18/5.85 37.08/18.86 32.33/13.51
PL 45.95/24.00 25.67/9.52 46.14/27.10 39.25/20.21
TAROT 97.68 / 51.55 42.73/11.83 63.39 / 34.67 67.93 / 32.68
Ar — CI(Ar) Ar — CI(Pr) Ar — CI(Rw) Avg.
ARTUDA 78.78 / 11.00 29.80/7.37 34.08/8.40 47.56/8.92
RFA 99.63 /33.79 49.83/17.59 60.50/17.37 69.99 /22.92
SRoUDA 30.70/7.87 34.47/15.68 35.85/13.54 33.67/12.36
PL 32.51/11.83 38.30/24.24 39.89/19.99 36.90/18.69
TAROT 99.59 / 40.38 45.73/122.35 55.64 /2242 66.98 / 28.38
Ar — Rw(Ar) Ar — Rw(Cl) Ar — Rw(Pr) Avg.
ARTUDA 18.83/2.64 7.70/0.89 6.28/0.45 10.94/1.33
RFA 99.63 / 46.89 42.52/21.47 51.52/21.47 64.56 /29.94
SRoUDA 39.39/17.47 39.54/28.64 50.76 / 35.84 43.23/27.32
PL 41.78/19.41 41.97/31.39 5242173724 45.39/29.34
TAROT 98.35/64.24 47.86 / 35.19 58.32/39.54 68.18 / 46.32
Cl — Ar(Cl) Cl — Ar(Pr) Cl — Ar(Rw) Avg.
ARTUDA 72.60/18.67 13.90/1.10 8.40/0.64 31.63/6.81
RFA 95.37 / 84.81 48.61/19.49 50.52/20.11 65.84/42.47
SRoUDA 39.86/25.98 33.61/18.14 39.55/21.23 37.67/21.78
PL 42.45/28.94 37.33/22.39 42.92/24.81 40.90/25.38
TAROT 94.271/83.78 46.27/27.96 50.72/26.76 63.76 / 46.17
Cl — Pr(Cl) CI — Pr(Ar) Cl — Pr(Rw) Avg.
ARTUDA 72.99/38.10 13.14/3.05 19.92/5.90 35.35/15.68
RFA 98.35/84.70 34.91/7.95 51.58/17.08 61.61/36.57
SRoUDA 35.72/24.35 18.09/6.88 37.16/19.92 30.32/17.05
PL 41.44/29.07 21.92/9.19 41.54/23.96 34.97/20.74
TAROT 95.65 / 86.09 30.20/11.54 51.41/27.34 59.09 / 41.66
Pr — CI(Pr) Pr — CI(Ar) Pr — CI(Rw) Avg.
ARTUDA 97.30/47.94 23.28/3.79 45.12/11.59 55.23/21.11
RFA 99.75 /59.88 34.91/5.93 55.87/15.14 63.51/26.99
SRoUDA 61.48/41.41 18.87/6.55 31.95/15.06 37.43/21.00
PL 52.20/33.03 22.42/9.31 38.74/19.74 37.78 1 20.69
TAROT 98.60/79.43 30.70/9.48 53.27/22.88 60.86 / 37.26
Pr — Rw(Pr) Pr — Rw(Ar) Pr — Rw(Cl) Avg.
ARTUDA 98.29/60.17 25.6774.62 36.24/16.24 53.40/27.01
RFA 99.75/ 68.48 37.67/17.83 41.79/19.70 59.74/32.01
SRoUDA 61.48/41.41 34.82/16.07 42.09/30.68 46.13/29.38
PL 61.05/43.34 36.09/17.10 42.11/30.91 46.42/30.45
TAROT 96.13/82.43 39.14/16.15 46.87 / 33.01 60.71/ 43.86
Rw — Ar(Rw) Rw — Ar(Cl) Rw — Ar(Pr) Avg.
ARTUDA 90.66/19.72 41.19/15.46 53.177/16.99 61.67/17.39
RFA 99.56 /51.02 47.24/22.25 64.09/27.33 70.30/33.53
SRoUDA 49.53/25.20 32.21/19.89 36.34/20.43 39.36/21.84
PL 51.32/27.50 35.40/24.26 40.39/23.56 42.37/25.11
TAROT 95.50/ 64.82 46.35/32.21 59.63/37.37 67.16 / 44.80
Rw — Pr(Rw) Rw — Pr(Ar) Rw — Pr(Cl) Avg.
ARTUDA 66.63/18.16 25.30/4.33 39.04/16.06 43.66/12.85
RFA 99.59/41.52 48.26 / 7.99 44.35/20.18 64.07 /23.23
SRoUDA 44.27/21.57 20.03/6.84 33.49/20.89 32.60/16.44
PL 48.80/26.60 23.65/9.60 36.98 /24.86 36.47/20.35
TAROT 97.89/61.85 42.23/14.30 47.65 / 31.50 62.59 /35.88




other methods. Is it worth emphasizing that Robust-PT
is crucial for enhancing the performance of both PL and
TAROT. As discussed in Sec. 5.2, the performance gap be-
tween TAROT and PL widens as ¢ increases.

10.3. Sensitivity Analysis of «

We present the previously unreported values from Figure 2.
In Table 7, the results for DomainNet are reported. We can
observe that the target performance is highest when o« = 1.0.
Additionally, o = 1.0 yields the best performance on both
source and unseen (average) domains.

In Table 8, the results for VisDA2017 results are reported.
As shown in Figure 2, the standard and robust accuracies on
the target domain exhibit minimal variation across different
values of o. However, the performances on the source do-
main exhibit relatively large variations. We choose o = 0.1,
since it shows highest robust accuracy among the candidate
values of a.

10.4. Evidence on Local Lipschitz Surrogate

In constructing the objective for TAROT, we employ adver-
sarial training to reduce the local Lipschitz constant. Here,
we empirically demonstrate that combining adversarial train-
ing with pseudo labeling effectively reduces the local Lips-
chitz constant. Following the approach of Yang et al. [42],
we compute the empirical local Lipschitz constant using the
following formula:
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Table 9 illustrates the training dynamics of the local Lipschitz
constants, showing that adversarial training with pseudo la-
bels effectively reduces these constants during training phase
of PL. We evaluate the empirical local Lipschitz constant
under various settings, considering four cases: with or with-
out Robust-PT, and with or without adversarial training. We
observe that when conducting an adversarial training, the
empirical local Lipschitz constant significantly decreases
across all tasks.

10.5. Performance with Lower Perturbation Bud-
gets ¢, on Office31 and OfficeHome.

We also conduct experiments with smaller values of ¢ than
those used in the main experiment in Sec. 5.1.1. Specifically,
we evaluate £ € {8/255,4/255} on the Office31 and Of-
ficeHome datasets, aligning with the experimental settings
described in the original works [3, 20, 46]. Tables 13, 14, 15
and 16 demonstrate that TAROT also outperforms existing
methods under small perturbation budgets. Compared to the
other methods presented in Tables | and 2, which experience
significant performance degradation at larger perturbation
budgets (¢ = 16/255), TAROT maintains its robustness even
under these larger perturbation budgets.

10.6. Evaluation Against Other Attack Methods
than AutoAttack

We additionally evaluate TAROT and other existing methods
against other attack methods than AutoAttack. We evaluate
each methods on OfficeHome with perturbation size of € =
16/255, against FGSM, MM, CW20, PGD20 and AA. In
Table 11, we can observe that TAROT outperforms existing
methods in all means.

10.7. On the Use of the Standard Margin Risk of
the Source Domain

If replacing R.s(f) with R°(f) burdens the computation
cost, requiring to generate adversarial examples. Moreover,
it would result in a looser bound in theoretical perspective
(- Rs(f) < RE(f)), making it less desirable. To demon-
strate the superiority of the proposed algorithm, we present
empirical results obtained by replacing R.s(f) with R°(f).
As seen in the table below, TAROT with R s(f) shows higher
performance in both standard and robust accuracies than
TAROT with RI®(f). Hence, the use of Rs(f) rather than
R (f) is justified both theoretically (a tighter bound) and
empirically.



Table 7. Sensitivity Analysis of c,, on DomainNet. Performance of generalization and robustness when « varies. In each cell, the first

number is the standard accuracy (%), while the second number corresponds to the robust accuracy (%) for AA.

Target Source Unseen
« C—R([R) C—R(O) C—R() C—R(P) C—R(®S) Avg.
0.0 | 43.57/28.68 | 48.41/35.89 10.70/5.66  24.44/11.46 22.84/13.55 | 29.99/19.05
0.05 | 46.24/30.66 | 52.79/39.19 | 26.28/12.19 26.28/12.19 24.80/14.68 | 32.24/20.50
0.1 46.83/31.03 | 55.87/41.88 | 26.65/12.49 26.65/12.49 26.08/15.59 | 33.42/21.41
0.5 49.39/31.46 | 67.71/51.57 | 30.18/13.57 30.18/13.57 34.07/19.81 | 38.93/24.59
1.0 | 49.73/31.73 | 71.58/54.42 14.36/6.60  31.45/13.53 36.26/20.29 | 40.68/25.32

Table 8. Sensitivity Analysis of o, on VisDA2017. Performance of generalization and robustness when « varies. In each cell, the first

number is the standard accuracy (%), while the second number corresponds to the robust accuracy (%) for AA.

Table 9. Empirical Local Lipschitz Constant in Various Training Settings. Lipschitz denotes the empirical local Lipschitz constant

Target Source
« Syn. — Real Syn. Avg.
0.0 | 67.48/38.71 | 43.29/24.69 | 55.39/31.70
0.05 | 67.01/38.56 | 78.70/47.93 | 72.86/43.25
0.1 66.12/37.91 | 85.18/51.21 | 75.65/44.56
0.5 | 66.45/36.97 | 86.63/46.30 | 76.54/41.64
1.0 | 64.48/35.48 | 67.63/34.32 | 66.06/34.90

value. Standard accuracy (%) and the robust accuracy (%) for PGD20 are also described.

Method | Adv. Train. | Lipschitz Ar — Rw Lipschitz Cl — Rw Lipschitz Pr — Rw
PL X 6653.58 78.40/1.31 6518.85 72.09/2.50 6992.54 78.84/1.26
PL e = 8/255 1014.95  77.78/70.53 981.91 72.80 / 64.66 1086.23  79.30/72.14

Table 10. Effect of Robust-PT with various ¢, on OfficeHome. In each cell, the first number is the standard accuracy (%), while the second

number corresponds to the robust accuracy (%) for AA. Bold numbers indicate the best performance.

€ Robust-PT | Method Ar — Rw Cl — Rw Pr —+ Rw Avg.
v PL 73.10/40.26  68.14/37.37 74.82/40.74 72.02/39.45
16/255 X PL 6.59/0.00 3.121/0.00 5.92/0.161 5.21/0.05
v TAROT | 77.78/42.62 71.31/39.22 78.72/43.13 75.94/41.66
X TAROT 22.47/70.74 21.71/0.90 18.98/70.73 21.05/0.79
v PL 78.15/55.68 71.70/50.06  78.29/54.17  76.05/53.30
12/255 X PL 8.54/0.05 5.30/0.00 5.92/0.34 6.59/0.13
v TAROT | 78.98/56.53 72.39/52.15 79.41/57.24 76.93/55.31
X TAROT 23.04/1.81 37.53/3.83 28.80/0.62 29.79/2.09
v PL 78.70/69.43  72.53/63.44  78.27/69.50 76.50/67.45
8/255 X PL 10.83/1.68 12.65/2.32 9.00/1.17 10.83/1.72
v TAROT | 78.77/70.46 73.01/63.78 79.44/70.83 77.07/68.36
X TAROT | 69.70/24.54  65.32/30.25 64.86/21.92 66.63/25.57
v PL 79.16/7393  71.52/65.87 79.02/73.97 76.57/71.26
6/255 X PL 63.39/31.86 59.24/29.49 51.85/20.82  58.16/27.39
v TAROT | 79.41/74.36 72.48/67.27 79.57/7524 77.16/72.29
X TAROT | 77.60/52.26 72.05/51.11 77.28/44.09 75.64/49.15
v PL 79.02/75.69 71.93/67.78 78.59/75.56  76.51/74.75
4255 X PL 78.31/60.13  71.22/5591  77.83/58.05 75.79/58.03
v TAROT | 78.86/76.43 73.03/69.59 78.84/7586 76.91/73.96
X TAROT | 79.41/69.20 72.53/62.57 79.94/70.16 77.29/67.31
v PL 78.08/76.11  72.37/69.64 79.39/77.02  76.61/74.25
2/255 X PL 77.88/73.93  71.72/67.23  79.48/74.78  76.36/71.98
v TAROT | 78.36/76.70 73.42/71.24 79.21/77.09 77.00/75.01
X TAROT | 78.56/72.24  72.37/68.65 79.62/75.65 76.85/72.18




Table 11. Performances of ARTUDA, RFA, SRoUDA, PL and TAROT on OfficeHome (¢ = 16/255), evaluated with FGSM, MM,
CW20, PGD20 and AA. Bold numbers indicate the best performance.

Method Dataset Task | Standard | FGSM MM CW20 PGD20 AA
ARTUDA All 27.03 11.79 8.55 9.01 9.21 7.86
RFA All 55.00 20.50 9.81 15.39 16.15 8.49
SRoUDA | OfficeHome All 57.97 46.64 36.21 41.49 42.56 33.42
PL All 66.00 55.08 47.38 51.08 51.71 44.38
TAROT All 68.29 57.29 49.58 53.44 54.01 46.80

Table 12. Performance comparison when using the standard margin risk and the robust margin risk on the source domain. Bold
numbers indicate the best performance.

Method Dataset Task | Stand AA
TAROT w/ R (f) (Ours) | OfficeHome | All | 6829 | 46.80
TAROT w/ R'S™ ") (f) | OfficeHome | All | 67.63 | 44.24

Table 13. Performances of ARTUDA, RFA, SRoUDA, PL and TAROT on Office31 (¢ = 8/255). In each cell, the first number is the
standard accuracy (%), while the second number is the robust accuracy (%) for AA. Bold numbers indicate the best performance.

Method A—D A—W D—A D—-W WA W —D Avg.
ARTUDA | 47.79/45.58 47.67/45.16 42.88/33.12 88.81/86.54 59.99/36.74 94.18/91.57 63.55/56.45
RFA 78.51/45.18 73.84/33.08 62.30/46.57 98.24/79.87 61.02/43.95 99.20/81.53 78.85/55.03
SRoUDA | 89.96/85.54 91.57/90.57 49.38/22.36 97.99/90.31 71.92/65.71 98.59/97.99 83.24/75.41
PL 93.37/93.37 94.72/94.34  73.59/71.81 98.49/98.37  74.26/72.63 99.80/99.60 89.04 / 88.35
TAROT 93.37/92.97 94.47/94.47 76.32/75.19 98.62/98.49 72.74/71.64 100.00/100.00 | 90.45/90.04

Table 14. Performances of ARTUDA, RFA, SRoUDA, PL and TAROT on OfficcHome (¢ = 8/255). In each cell, the first number is the

standard accuracy (%), while the second number is the robust accuracy (%) for AA. Bold numbers indicate the best performance.

Method Ar — Cl Ar — Pr Ar — Rw Cl — Ar Cl — Pr Cl — Rw
ARTUDA | 47.45/32.33 3494/18.00 4044/21.16 21.59/1220 43.23/27.06 40.40/24.03
RFA 47.49/31.59 53.80/29.13  62.98/28.44 43.55/1632 59.36/32.55 57.20/25.78
SRoUDA | 53.61/46.64 7522/66.57 78.56/69.89 60.07/54.68 70.06/67.13  70.07/62.70
PL 56.01/52.92 72.58/68.37 78.63/68.99 60.82/55.71 72.88/68.53 72.64/63.19
TAROT 56.58/53.28 75.36/71.50 79.09/70.62 61.06/5530 72.52/68.17 73.06/63.92
Pr — Ar Pr— Cl Pr — Rw Rw — Ar Rw — C1 Rw — Pr Avg.
ARTUDA | 27.73/9.81 46.76/37.39  49.46/28.02 32.18/17.18 54.85/43.71 68.12/40.03 | 42.26/25091
RFA 42.32/1450 47.61/2834 64.13/2589 54.88/19.04 55.62/33.31 72.76/37.26 | 55.14/26.84
SRoUDA | 61.64/58.51 44.74/41.51 79.39/71.06 72.64/69.76 52.28/46.30 83.56/80.38 | 60.07/54.68
PL 61.10/56.20 52.81/49.71 78.63/69.06 72.60/67.74  60.21/56.63 84.14/80.42 | 68.59/63.12
TAROT 61.95/55.79 54.09/50.84 79.62/70.65 72.56/68.56 60.28/55.67 84.66/80.74 | 69.23/63.75

Table 15. Performances of ARTUDA, RFA, SRoUDA, PL and TAROT on Office31 (¢ = 4/255). In each cell, the first number is the

standard accuracy (%), while the second number is the robust accuracy (%) for AA. Bold numbers indicate the best performance.

Method A—D A—>W D—A D—-W W —A W —D Avg.
ARTUDA | 71.89/71.69  73.71/73.33 57.93/5225 93.21/93.08 58.93/52.68 98.39/97.99 75.68 /73.50
RFA 83.53/78.11 81.89/72.58 61.38/54.03 97.48/96.73 63.44/56.12  100.00/99.20 | 81.29/76.13
SRoUDA | 92.97/92.77 95.22/94.21 74.62/65.74 98.74/98.74 66.45/64.57 100.00/100.00 | 88.00/86.01
PL 89.56/89.56 93.46/93.33  75.04/74.55 98.49/98.49 72.70/72.70  100.00/100.00 | 88.21/88.11
TAROT 93.37/93.17 93.84/93.59 75.22/74.55 98.49/98.49 74.51/73.55 100.00/100.00 | 91.00/90.72

Table 16. Performances of ARTUDA, RFA, SRoUDA, PL and TAROT on OfficecHome (¢ = 4/255). In each cell, the first number is the

standard accuracy (%), while the second number is the robust accuracy (%) for AA. Bold numbers indicate the best performance.

Method Ar — Cl Ar — Pr Ar — Rw Cl — Ar Cl — Pr Cl -+ Rw
ARTUDA | 49.44/4438 46.81/38.97 57.56/4478 38.53/31.23 57.51/51.07 55.27/45.15
RFA 49.21/40.18 58.80/45.28 69.20/48.73  50.23/29.30  63.11/48.46 62.80/42.46
SRoUDA | 55.44/51.84 76.48/74.34 79.00/77.19 61.27/58.96 68.06/6691 69.38/67.32
PL 55.79/54.18 75.29/72.74 78.01/75.08 61.72/59.54 7191/69.27 72.16/69.02
TAROT 55.76 /5393  75.27/73.10 79.27/75.88  62.65/60.55 72.51/70.51 73.01/69.58
Pr— Ar Pr— Cl Pr — Rw Rw — Ar Rw — C1 Rw — Pr Avg.
ARTUDA | 39.31/29.46 52.42/48.11 63.23/5233 50.35/42.56 54.22/54.34 73.771/64.90 | 53.20/45.61
RFA 48.04/28.88  49.51/39.08 70.07/47.74 59.37/37.78 56.52/45.06 75.22/57.90 | 61.21/43.49
SRoUDA | 61.60/59.15 48.14/46.51 80.39/76.08 73.79/70.76 57.84/5521 83.16/81.38 | 67.88/65.47
PL 58.14/57.93  52.33/50.75 79.34/76.59  72.64/70.13 59.59/57.73  83.74/82.07 | 68.39/66.25
TAROT 60.65/58.92 53.08/51.34 79.78/76.43  73.05/71.74 59.92/57.92 83.44/81.87 | 69.03/66.82
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