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A. Appendix
A.1. Limitations and Discussion
In our work, we firstly demonstrate the effectiveness of us-
ing sparsely-gated Mixture-of-Experts (MoE) for learning
trajectory prediction model from large-scale out-of-domain
data, while conducting a thorough experimental study of its
training techniques. To the best of our knowledge, this is
one of the first attempts of using sparse MoE architecture for
learning from multiple domains data to ensure better parame-
ter cooperation and specialization in robotics. We hope it can
serve as a strong baseline and facilitate further research in
this direction. While we are encouraged by the strong results
across a wide range of simulated and real-world experiments,
some limitations and future works still remain. On the one
hand, the trajectory prediction model learning can further
integrate larger-scale human and robot video data. On the
other hand, our adaptive policy condition technique can also
be extended to other visual prompts.

A.2. The stability of LIBERO experiment results
In our LIBERO simulation experiment results, the train-
ing process and results are completely reproducible. Due
to the slight randomness in the simulation rendering, the
downstream LIBERO evaluation results cannot be fully re-
produced. Therefore, we further run the key experiments
three times and report the mean and standard deviation in
Tab. 1. The results indicate that the improvements brought
by our Tra-MoE and adaptive policy conditioning technique
are significant and stable.

A.3. The comparison of trajectory prediction model
In our work, we find that CoTracker [1] can provide highly
accurate labels. On the one hand, we can directly use the
ground truth provided by CoTracker to calculate the MSE
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error with our prediction results to measure the performance
of trajectory prediction. On the other hand, considering that
trajectory prediction task is multi-modal, we also need di-
rectly visualize some samples for prediction performance
analysis. In our experiments, we measure trajectory predic-
tion performance using the MSE loss on validation set of
four evaluation suites, as well as qualitatively and quantita-
tively find that the success rate of downstream manipulation
tasks is generally positively correlated with the performance
of the trajectory model, as shown in Fig. 1. Therefore, we
report the average success rate of downstream manipulation
tasks as our metric.

We also fairly compare the Tra-baseline (the track trans-
former of ATM) and our Tra-MoE, which are both trained
with a mixture of LIBERO and RLbench video data. Their
respective MSE error on the LIBERO validation set are
0.0000034773 and 0.0000012449. Additionally, we further
randomly select some samples for visualization, as shown in
Fig. 2. The visualization results also indicate that Tra-MoE
is significantly more accurate than Tra-baseline. Tra-MoE
is generally able to predict accurate trajectories, whereas
Tra-baseline occasionally predict stationary or even opposite-
direction movements, leading to poorer downstream policy.
This is primarily attributed to optimization conflicts aris-
ing from multiple domains data joint training. Conversely,
our Tra-MoE, with its superior parameter cooperation and
specialization, can better handle such situations.

A.4. The Simulation environments details

In this section, we further elaborate on the details of our sim-
ulation experiments. The training hyperparameters for the
trajectory prediction model and the trajectory-guided policy
are shown in Tab. 2 and Tab. 3, respectively. We use the
same training hyperparameters to ensure a fair comparison
between our Tra-MoE and Tra-baseline. When we train the
trajectory model integrating RLbench data, we report the

1

https://github.com/MCG-NJU/Tra-MoE


Spatial Goal Object Long Avg.

Tra-baseline
49.5 67.0 56.5 35.0 52.0

52.0±0.151.5 69.0 58.5 29.0 52.0
51.5 67.0 58.5 31.5 52.1

Tra-MoE
62.5 81.0 73.5 28.5 61.4

61.2±0.462.5 80.5 72.5 27.5 60.8
67.0 79.5 72.5 27.0 61.5

Tra-MoE + Aaptive Mask
72.5 74.0 86.5 34.5 66.8

67.7±0.873.0 78.0 86.5 35.5 68.3
72.5 75.5 87.5 36.0 67.9

Table 1. We rerun the key experiments three times and report the mean and standard deviation.

Hyperparameters In-domain data Out-of-domain data

Number of videos 400 2200 / 2660
Number of tasks 40 130 / 222

Epoch 1000 300
Batch size 2048
Optimizer AdamW

Learning rate 1e-4
Weight decay 1e-4
LR scheduler Cosine
LR warm-up 5

Clip grad 10
Point sampling Variance filtering

Number of points 32
Track length 16

Augmentation ColorJitter, RandomShift
dropout 0.2
depth 8

dimension 384

Table 2. Hyperparameters of our trajectory model training.

specific tasks used in Tab. 4. For the majority of the hyperpa-
rameters, we inherit the settings from ATM [3]. Additionally,
when we extend Tra-baseline in depth, the depth is increased
from 8 to 14; when we extend Tra-baseline in width, the
dimension is increased from 384 to 512. Finally, following
the original LIBERO [2] setup, we perform 20 trials for each
task evaluation, ensuring a total of 800 (20×40) trials for
each model evaluation.

A.5. The Real-World environments details
In this section, we further elaborate on the details of our
real-world experiments. Specifically, we use two leader
arms to perform teleoperation for follower arms data collec-
tion, where 50 demonstrations are collected for each task
for trajectory model and policy training. For our real-world
evaluations, we conduct 20 trials for each task, while en-
suring, to the extent possible, that the object poses in the
training set differ from those in the test set. For the relevant

training hyperparameters, we maintain consistency with the
simulation experiments.
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Hyperparameters Policy

Number of demonstrations 100
epoch 120

batch size 384
optimizer AdamW

learning rate 5e-4
weight decay 1e-4
lr scheduler Cosine
lr warm up 0
clip grad 100

point sampling grid
number of points 32

track length 16
frame stack 10

augmentation ColorJitter,RandomShift
dropout 0.1

Table 3. Hyperparameters of our trajectory-guided policy training.

Figure 1. The quantitative relationship between downstream policy success rate and trajectory model performance.
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Figure 2. The trajectory prediction results visualization. Left: the ground truth by CoTracker [1]. Right: the prediction result.



beat the buzz lamp off
block pyramid place hanger on rack

put umbrella in umbrella stand take money out safe
place shape in shape sorter take umbrella out of umbrella stand

reach and drag take tray out of oven
lamp on push button

change channel take toilet roll off stand
light bulb in setup checkers
play jenga close door

reach target open door
take plate off colored dish rack meat on grill

change clock close drawer
light bulb out stack cups

plug charger in power supply take usb out of computer
remove cups slide cabinet open and place cups

take shoes out of box slide block to target
close box put bottle in fridge

meat off grill toilet seat down
pour from cup to cup put groceries in cupboard
scoop with spatula toilet seat up

press switch put item in drawer
screw nail stack blocks

move hanger close grill
close fridge open microwave
open box put books on bookshelf

setup chess put knife in knife block
close jar empty container

open drawer turn tap
close laptop lid open grill

open fridge close microwave
solve puzzle turn oven on

tv on wipe desk
put knife on chopping board hockey

stack wine take cup out from cabinet
unplug charger put rubbish in bin

get ice from fridge open wine bottle
open oven hit ball with queue

put money in safe weighing scales
straighten rope sweep to dustpan

water plants put plate in colored dish rack
hang frame on hanger open window

phone on base put tray in oven
put shoes in box place cups

take frame off hanger insert usb in computer
insert onto square peg take item out of drawer

pick and lift put toilet roll on stand take lid off saucepan

Table 4. The language annotations of 92 RLbench tasks.
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