
Unified Dense Prediction of Video Diffusion

Supplementary Material

This supplementary material provides additional visual-
ization results, details about the Panda-Dense video dense
prediction dataset, and thorough descriptions of the training
and inference processes for video generation and dense pre-
diction, which includes segmentation and depth estimation.
The contents of this supplementary material are organized
as follows:
• Panda-Dense Dataset details.
• Detailed training and inference information for two tasks.
• More ablation studies on the model.
• Additional visualization results, including examples of

video generation and the dense prediction.
Additionally, please see the mp4 file in our supplemen-

tary material to view the recorded video that provides a con-
cise overview of our paper.

1. Panda-Dense Dataset Details
In Fig. 1, we present the distribution of the number of en-
tities in our video segmentation dataset. The data shows
a broad distribution of entities, with most concentrated in
the range of 1 to 20. Additionally, our dataset includes nu-
merous dense segmentation samples that contain multiple
entities in complex scenes.

2. Training / Inference Details
In our work, we train our model using the Panda-Dense data
set and initialize it with the weights of the CogVideoX 5B
model. We duplicate the weights from the original 16 chan-
nels to accommodate the added input and output channels.

This adjustment modifies the original layers instead of
adding extra branches, which would disrupt the existing
weights. In other words, this set of weights cannot be ex-
pected to directly output two feasible and identical video
sequences after adding channels, so complete fine-tuning is
required.

Regarding prompts, long captions offer more detailed
descriptions and greater control, while short captions pro-
vide users with flexibility. We demonstrate the compari-
son between Panda-70M original captions and our Panda-
Dense captions in Fig. 2. To balance strong scene descrip-
tion capabilities with user input convenience, we utilize
long captions from our dataset with a probability of 0.8 and
short captions from Panda-70M with a probability of 0.2 for
each video.

Training is conducted under these conditions for 40000
steps. During inference, we employ DPM++ to execute 50
inference steps, generating 49 video frames along with their

Figure 1. Distribution of entity number in the video segmenta-
tion dataset. The X-axis represents the groups of the total number
of entities in a single video, while the Y-axis represents the total
number of videos appearing in this group.

Panda-70M: A man bending over to pick up a barbell in a gym.
Ours: A muscular man with tattoos, wearing a black tank top and black pants, is in a gym. He 
approaches a barbell rack and grabs a barbell. He bends down to place the barbell on the floor. 
After positioning the barbell, he stands up and walks away from the rack. The gym background 
includes various exercise equipment and a blue wall with a large "BB" logo.

Panda-70M: Two women are standing in a backyard and discussing something.
Ours: Two women are standing in a backyard with a wooden fence and greenery in the background. 
The woman on the left has long brown hair and is wearing a black and white striped shirt. The 
woman on the right has her hair tied back and is wearing a light blue shirt. She gestures with her 
right arm extended, pointing towards something off-camera. The setting appears to be a casual 
outdoor environment with visible power lines and trees.

Figure 2. Caption comparison. Refer to the same video, compare
the original Panda-70M caption and our Panda-Dense caption.

corresponding dense prediction maps.

Video Depth Estimation. During inference, the video
and the corresponding depth estimation map are produced,
with the depth map appearing as an RGB value map sim-
ilar to a visualization. Therefore, we should convert the
depth map to a single-channel depth value between 0 and
1. Since the depth-to-color projection Pd is a unidirec-
tional function, we can not project the RGB colors back
to depth values. To project it back, we sampled 256 RGB
values with equal intervals in the 0-1 depth range, as: Pc =
Pd

(
k

256

)
, for k = 1, 2, . . . , 256. Thus, we have the dis-

crete color-to-depth projection Pc. For each pixel, we cal-



Strategy SC (↑) BC (↑) MS (↑)

Random initialization 95.15 95.48 97.99
Duplicate initialization 97.07 96.89 99.23

Table 1. Ablation study on initialization strategy on additional
channel weight. Different additional channel weight initialization
strategy for input and output layers. ‘SC’, ‘BC’ and ‘MS’ stand for
subject consistency, background consistency, and motion smooth-
ness.

Strategy Multi-task SC (↑) BC (↑) MS (↑)

Scratch - 81.28 76.39 84.46
Scratch ✓ 84.32 81.63 89.31
CogVideoX ✓ 97.07 96.89 99.23

Table 2. Ablation study on initialization strategy on whole
model weight. Different model-level weight initialization meth-
ods for UDPDiff, comparing initialize from CogVideoX and train
from statch. ‘SC’, ‘BC’ and ‘MS’ stand for subject consistency,
background consistency, and motion smoothness.

culate the distance between its RGB value and the available
discrete values in Pc, and then project back to the depth
value. After propagating the depth for all frames in the
video, we obtain a distance-based video depth estimation
map.
Multi-task. The multi-task model defines a dictionary map-
ping different tasks to specific IDs, with segmentation as-
signed as 0 and depth estimation as 1. This ID serves as the
input for the task embedding. During training, we randomly
sample different tasks, corresponding to different task IDs
and their respective dense prediction maps. During infer-
ence, in addition to the caption, a specific task ID must
be provided as input. The video channel consistently out-
puts video, while the dense prediction channel outputs ei-
ther segmentation or depth estimation under the guidance
of task embedding.

3. Ablation Studies

Additional Channel Weight Initialization Method. In our
work, we augment the input and output layers with an addi-
tional 16 channels to accommodate the inputs and outputs
of the dense prediction channels. Specifically, we dupli-
cate the original 16 channels of the input and output layers
of CogVideoX and concatenate the weights of the two sets
of 16 channels to form 32-channel inputs and outputs. We
conduct ablation experiments using the multitask model in-
ference depth estimation to explore different initialization
methods for the weights of the additional channels, includ-
ing using the pre-trained weights from CogVideoX and ran-
dom initialization. As shown in Tab 1, utilizing the weights

Figure 3. Converge speed comparison. Train from scratch, com-
paring single-task training and multi-task training converge speed.
‘SC’, ‘BC’ and ‘MS’ stand for subject consistency, background
consistency, and motion smoothness.

from CogVideoX’s input and output layers as duplicate ini-
tialization outperforms random initialization. Although in-
creasing the number of channels and concatenating them
disrupts the original weight distribution, using pre-trained
weights for dense prediction features still results in better
adaptation performance.

Pretraining. Since our method is based on CogVideoX 5B,
we directly utilize the weights of CogVideoX 5B’s text-to-
video model to initialize all layers except for the input and
output layers. For the input and output layers, we continue
to adopt the duplicating channel approach by concatenat-
ing the original weights of CogVideoX. In this experiment,
we compare this strategy with an entirely random initialized
multi-task model, both trained for 40000 steps. As shown in
Tab 2, the method initialized with CogVideoX outperforms
the training from scratch. This is because CogVideoX was
trained on a dataset much larger than ours and employed
various training tricks. Our fine-tuning approach cannot
achieve good results on datasets of this scale. Using pre-
trained weights allows the model to learn from an appropri-
ate distribution, resulting in better performance. To further
illustrate the advantages of our multi-task training strategy
beyond the fine-tuning stage, we compare the performance
of a single-task model trained from scratch with that of a
multi-task model, as shown in Tab. 2. Multi-task training
delivers better performance under the same conditions. Ad-
ditionally, we present in Fig. 3 the validation scores of the
single-task and multi-task models at different steps. The
multi-task model achieves higher scores at each step and
exhibits a smoother increase in the later stages, converg-
ing more rapidly. Therefore, our multi-task training strategy
also accelerates the training process.

Model Parameter. The original CogVideoX model is avail-
able in 2B and 5B. Our initial experiments utilize the 2B
model. Although the 2B model is more efficient, it has a



Model Size SC (↑) BC (↑) MS (↑)

2B 87.29 89.19 91.76
5B 94.98 95.92 98.62

Table 3. Ablation study on model size. Compare the performance
of our method using CogVideoX at 2B and 5B model sizes. ‘SC’,
‘BC’ and ‘MS’ stand for subject consistency, background consis-
tency, and motion smoothness.

smaller capacity, which may result in insufficient perfor-
mance compared to the larger model. For our experiments
with the 2B model, we employed the DDIM sampler, which
is also used in the 2B version of CogVideoX. We compared
the performance differences between the 2B and 5B models
within our method, specifically focusing on the single-task
segmentation model, as presented in Tab. 3. The increased
number of parameters in the 5B model led to significant per-
formance improvements. This larger model is better at in-
corporating segmentation guidance and can generate more
realistic and higher-quality videos.

4. More Visualization Results
Fig. 4 presents additional videos generated by our model,
showcasing its capabilities in diverse scenes. These videos
include subjects such as portraits of people, animals in
motion, and dynamic landscapes. In these examples,
we demonstrate high-quality generation results, producing
videos that are consistent, smooth, and aesthetically pleas-
ing. The model effectively maintains temporal coherence
and visual fidelity throughout the frames, capturing fine de-
tails and natural movements inherent in different scenes.

Fig. 5 provides more videos and their segmentation re-
sults, where the multitask model performs inference in seg-
mentation mode. The guidance provided by segmentation
improves the consistency and quality of video generation
and produces the corresponding high-quality segmentation
masks. Our segmentation is very detailed in both sim-
ple and complex, densely populated scenes. Fig. 6 dis-
plays videos and their corresponding depth maps, with in-
ference performed in depth estimation mode by the mul-
titask model. Depth estimation also improves consistency
and quality while generating accurate depth maps.



Figure 4. More examples on video generation quality. Six frames are evenly sampled from the entire 49-frame video generated. Having
the sample in both portraits, animals, and landscapes.



Figure 5. More examples on video generation with segmentation. Each pair consists of two rows: the first row displays the generated
video, while the second row shows the corresponding segmentation. Six frames are evenly sampled from the total of 49 frames in the
generated video. Our results demonstrate excellent performance in both simple scenes and those with densely packed objects, highlighting
our ability to effectively segment dense entities.



Figure 6. More examples on video generation with depth estimation. Each pair has two rows: the first row displaying the generated
video, and the second row presenting the corresponding depth estimation map. Six frames are evenly sampled from the total of 49 frames
in the generated video.
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