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A. Further Discussion
A.1. Comparison with Text-relevant Efficient VLM
We observe that most recent Efficient VLMs [6, 16, 55, 66]
utilize attention mechanisms between text tokens and visual
tokens to determine which visual tokens should be retained,
processing them during the LLM forward. However, our
method, VisionZip, removes visual token redundancy be-
fore inputting them into the LLM. We will demonstrate our
advantages from the following perspectives.
Better Performance. As shown in Table 1, 2, 3 of the
main paper, our VisionZip achieves better performance in
the training-free mode. This is because the Vision Encoder
pre-groups the visual information into a few tokens, which
often appear in the background or less prominent areas.
However, when tokens are selected based on the seman-
tic information of the text, the chosen tokens are often not
the dominant tokens and carry less information, resulting in
lower performance compared to VisionZip. Additionally, to
better demonstrate the misalignment caused by the Vision
Encoder’s pre-grouping of information, we have created an
interactive demo. As shown in Fig. 15, the code for this
demo will be published soon.
More Efficient. Our method reduces the redundancy of
visual tokens before inputting them into the LLM, avoid-
ing the heavy attention computation in the early layers of
the LLM (Sec. B.3). Additionally, we observe that previ-
ous text-relevant Efficient VLMs require significant inter-
mediate computations to determine which tokens need to be
dropped during the LLM forward process. This leads to a
noticeable increase in memory usage, sometimes exceeding

that of the vanilla model. This issue is particularly evident
in models like LLaVA-NeXT, where the number of visual
tokens is substantial.

More Application Scenarios. VisionZip operates out-
side the LLM, making it compatible with any existing LLM
and applicable to all acceleration algorithms designed for
LLMs. Furthermore, VisionZip is better suited for practi-
cal applications such as multi-turn conversations and other
real-world scenarios.

A.2. VisionZip for Non-CLS Vision Encoders
Although most popular vision encoders, such as CLIP [42],
OpenCLIP, and LanguageBind [71], use the CLS token
to aggregate information, a recently introduced vision en-
coder, SigLIP, does not include the CLS token. To demon-
strate the generalization of our proposed VisionZip, we ex-
plain how to apply it to Non-CLS Vision Encoders in this
section.

Specifically, for the Dominant Token Selection, we first
calculate the attention score as shown in Eq. 3,

Sh = Softmax
(
QhK

⊤
h√

Dh

)
, (3)

where Sh is the attention score of each head, and Dh

is the head dimension, Qh and Kh represent query and
key, respectively. By averaging across the head dimen-
sion, we obtain an aggregated attention matrix Savg ∈
RB×SeqLen×SeqLen, which reflects how each token attends
to every other token. The above process is similar to that of
vision encoders with a CLS token, as described in the main
text.

To identify key visual tokens, we calculate the aver-
age attention each token receives from all others in the se-
quence. Specifically, we compute the average along dim=1
of Savg to determine the degree to which each token is at-
tended to by others, representing its importance. Tokens
with higher average attention are considered more signifi-
cant and are retained. We provide the pseudocode in Algo-
rithm 3.

A.3. Additional Advantage of the VisionZip

Easy to deploy. Due to VisionZip directly reducing
the visual tokens before projecting them into the LLM,
rather than gradually reducing them during the LLM for-
ward process, it avoids extensive computation and memory
consumption in the LLM’s shallow layers. As shown in
Table 8, our method is compatible with existing quantiza-
tion techniques, maintaining performance while minimizing
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Retain 64 Retain 128 Retain 192
Dominant Contextual Dominant Contextual Dominant Contextual

LLaVA-1.5 54 10 108 20 162 30
Mini-Gemini 54 10 108 20 162 30

Table 6. Token number settings for VisionZip in LLaVA-1.5 [33] and Mini-Gemini [31]

Retain 160 Retain 320 Retain 640
Dominant Contextual Dominant Contextual Dominant Contextual

LLaVA NeXT 135 25 270 50 540 100

Table 7. Token number settings for VisionZip in LLaVA-NeXT [34]

Algorithm 3 Pseudocode for Dominant Token Selection-
NO CLS Token

# B: batch size; S: sequence length
# H: number of attention heads;
# K: number of target dominant tokens
# CLS_IDX: Index of the CLS token
# SELECT_LAYER: Selected layer for Visual Token

# set the output_attentions=True to get the attention
output = vision_tower(images, output_hidden_states=

True, output_attentions=True)

#attn in shape (B, H, S, S)
attn = output.attentions[SELECT_LAYER]

#attn in shape (B, H, S, S)
vanilla_tokens = output.hidden_states[SELECT_LAYER]

# no CLS token, use mean calculate received attention
attn_rec = attn.mean(dim=1).mean(dim=1) # (B, S)

# Select K Dominant Tokens
_, topk_idx = attn_rec.topk(K, dim=1)

# filter the Dominant Tokens
dominant_tokens = vanilla_tokens.filter(topk_idx)

cat: concatenation; filter: select the tokens based on the index.

memory usage. Furthermore, our method enables the 13B
model to be faster and perform better than the 7B model. As
shown in Table 9, our method significantly reduces the in-
ference time of the 13B model, making it twice as fast as the
vanilla 13B model and outperforming the vanilla 7B model
in both performance and efficiency. Full results across 11
evaluation benchmarks are provided in Appendix B. Addi-
tionally, VisionZip is well-suited for integration with LLM
acceleration optimization algorithms.

B. Additional Experiments

B.1. Image Understanding
B.1.1. Implementation Details.

Environments. We conduct the inference on a single
NVIDIA A800-80G GPU, while the fine-tuning process is
performed on 8 NVIDIA A800-80G GPUs. Furthermore,
to demonstrate the efficiency and effectiveness of our Vi-
sionZip, the full training is conducted on 8 NVIDIA 3090-

Precision Memory Acc

7B-Full 18,952 70.2
13B-Full 36,721 73.5
13B-8bit-† 16,632 70.8
13B-4bit-† 10,176 70.3

Table 8. Compatibility of Vi-
sionZip on various quantization
levels for ScienceQA. † repre-
sents use of VisionZip.

Size Time Acc

7B 1,714s 61.3
13B 2,516s 64.3
13B† 1,246s 62.2

Table 9. VisionZip boosts the
13B model’s performance and
efficiency over the 7B model on
TextVQA. † represents use of
VisionZip.

24G GPUs.
Parameters. For the VisionZip fine-tuning mode, we fine-
tune only the cross-modality projector layer using a learning
rate of 2e− 5, while keeping other components frozen. For
the VisionZip training stage and inference mode, we follow
the evaluation settings of the original model.
Token Number. As shown in Table 6, for LLaVA-1.5 and
Mini-Gemini, we present the number of dominant visual
tokens and contextual visual tokens across three different
configurations. Additionally, for LLaVA-NeXT, which con-
tains 5 subfigures, we provide the number of dominant vi-
sual tokens and contextual visual tokens across three differ-
ent configurations in Table 7.

B.1.2. Evaluation Benchmark
We conducted experiments on these widely used visual un-
derstanding benchmarks.
SEEDBench. SEEDBench [26] comprises 19,000
multiple-choice questions annotated by human assessors.
The evaluation spans 12 distinct aspects, assessing the mod-
els’ ability to recognize patterns in images and videos across
both spatial and temporal dimensions.
MMMU. MMMU [63] evaluates multimodal models on
complex tasks requiring college-level knowledge and rea-
soning. It includes 11.5K curated questions from exams,
quizzes, and textbooks, spanning six disciplines: Art & De-
sign, Business, Science, Health & Medicine, Humanities



Method GQA MMB MME POPE SQA VQAV2 VQAText MMMU SEED-I MMVet LLaVA-B Avg.

Upper Bound, 576 Tokens (100%)

Vanilla(CVPR24)
63.2 67.7 1818 85.9 72.8 80.0 61.3 36.4 66.9 35.3 70.8

100%
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Retain 192 Tokens (↓ 66.7%)

VisionZip
59.1 66.9 1754 85.1 73.5 78.1 59.5 36.4 65.2 37.5 77.5

97.9%
93.5% 98.8% 96.5% 99.1% 101.0% 97.6% 97.1% 100% 97.5% 106.2% 109.5%

VisionZip ‡
61.6 67.1 1790 84.5 72.7 78.6 59.9 36.4 66.1 37.7 73.9

98.7%
97.5% 99.1% 98.5% 98.4% 99.9% 98.3% 97.7% 100% 98.8% 106.7% 104.3%

Retain 128 Tokens (↓ 77.8%)

VisionZip
57.9 66.7 1743 85.2 74.0 76.8 58.7 36.1 63.8 37.5 70.8

97.0%
91.6% 98.5% 95.9% 99.2% 101.6% 96.0% 95.8% 99.2% 95.4% 106.2% 100%

VisionZip ‡
60.1 67.6 1736 83.8 73.0 77.6 59.2 35.4 64.9 38.3 72.3

97.4%
95.1% 99.9% 95.5% 97.6% 100.2% 97.0% 96.6% 97.3% 97.0% 108.5% 102.1%

Retain 64 Tokens (↓ 88.9%)

VisionZip
56.2 64.9 1676 76.0 74.4 73.7 57.4 36.4 60.4 33.9 70.3

93.7%
88.9% 95.9% 92.2% 88.5% 102.2% 92.1% 93.3% 100% 90.3% 96.0% 99.3%

VisionZip ‡
58.1 65.6 1671 81.6 72.3 75.2 58.5 35.3 61.4 36.7 68.7

94.8%
91.9% 96.9% 91.9% 95.0% 99.3% 94.0% 95.4% 97.0% 91.8% 104.0% 97.0%

Table 10. Performance of VisionZip on LLaVA 1.5 13B. The vanilla number of visual tokens is 576. The first line of each method
shows the raw benchmark accuracy, and the second line is the proportion relative to the upper limit. The last column is the average value.
VisionZip‡ indicates that fine-tuning the multimodal projector with 1/10 LLaVA-1.5 datasets. SEED-I represents SEED-IMG, which uses
the metric from LMMs-Eval [65]. The Avg calculation process does not include the results from LLaVA-B and MMVet, as the benchmark
is small and the results are not stable.

Model InfoVQA DocVQA
Retain 192 Tokens (↓ 66.7%)

LLaVA 1.5
25.7 28.1

100% 100%

VisionZip
25.0 25.8

97.3% 91.8%

Table 11. Effectiveness of VisionZip on OCR Benchmarks.

& Social Science, and Tech & Engineering. Covering 30
subjects and 183 subfields, these questions incorporate 30
image types like charts, diagrams, and chemical structures.
MMMU challenges models with advanced perception and
domain-specific reasoning, similar to expert-level.

MMVet. MMVet [61] defines six core vision-and-language
(VL) capabilities: recognition, OCR, knowledge, language
generation, spatial awareness, and math. These capabilities
integrate to address a range of complex multimodal tasks.
MM-Vet evaluates 16 specific integrations of these capabil-
ities through quantitative assessments.

LLaVA-Bench. LLaVA-Bench [33] collects a diverse set
of 24 images paired with 60 questions, encompassing in-

door and outdoor scenes, memes, paintings, sketches, and
more. Each image is accompanied by a highly detailed,
manually curated description and a carefully selected set of
questions. This design also evaluates the model’s robust-
ness to various prompts. Additionally, LLaVA-Bench cat-
egorizes questions into three types: conversational (simple
QA), detailed description, and complex reasoning.
VizWiz. VizWiz [14] comprises over 31,000 visual ques-
tions created by blind individuals, each capturing a photo
using a mobile phone and recording a spoken question about
it. Each visual question is paired with 10 crowdsourced an-
swers. The images, taken by blind photographers, are of-
ten of lower quality, the questions are spoken and conversa-
tional, and some visual questions cannot be answered due
to the nature of the content.
MMBench. MMBench [37] evaluates models through
three hierarchical levels of abilities: L-1 with two core abil-
ities (perception and reasoning), L-2 with six sub-abilities,
and L-3 with 20 specific dimensions. This structure enables
a detailed assessment of diverse capabilities.
ScienceQA. Spanning domains like natural, language, and
social sciences, ScienceQA [39] organizes questions hierar-
chically into 26 topics, 127 categories, and 379 skills. This
benchmark evaluates multimodal understanding, multi-step
reasoning, and interpretability.



Method GQA MMB MME POPE SQA VQAV2 VQAText MMMU SEED MMVet VizWiz LLaVA-B Avg.

Vanilla(CVPR24)
61.9 64.7 1862 85.9 69.5 78.5 58.2 36.3 58.6 31.1 50.0 66.8

100%
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

VisionZip 192 Tokens
61.5 67.4 1820 85.2 69.3 78.5 57.8 36.1 59.6 33 52.6 71.3

100.6%
99.4% 104.2% 97.7% 99.2% 99.7% 100% 99.3% 99.4% 101.7% 106.1% 105.2 106.7%

VisionZip 128 Tokens
60.0 66.6 1814 84.3 69.4 77.8 57.6 36.9 59.0 31.4 49.9 66.7

99.6%
96.9% 102.9% 97.4% 98.1% 99.9% 99.1% 99.0% 101.7% 100.7% 101% 99.8% 99.9%

VisionZip 64 Tokens
58.9 63.7 1785 84.1 69.3 76.0 57.1 36.2 55.8 29.9 46.8 63.5

97.1%
95.2% 98.5% 95.9% 97.9% 99.7% 96.8% 98.1% 99.7% 95.2% 96.1% 93.6% 95.1%

Table 12. Using VisionZip train the LLaVA 1.5 7B. The vanilla number of visual tokens is 576. The first line of each method shows
the raw benchmark accuracy, and the second line is the proportion relative to the upper limit. The last column is the average value.
VisionZip‡ indicates that fine-tuning the multimodal projector with 1/10 LLaVA-1.5 datasets. The Avg calculation process does not
include the results from LLaVA-B and MMVet, as the benchmark is small and the results are not stable.

Method GQA MMB MME POPE SQA VQAV2 VQAText MMMU SEED-I Avg.

Upper Bound, 2880 Tokens (100%)

Vanilla
64.2 67.9 1842 86.4 70.2 80.1 61.3 35.1 70.2

100%
100% 100% 100% 100% 100% 100% 100% 100% 100%

Retain 640 Tokens (↓ 77.8%)

VisionZip
61.3 66.3 1787 86.3 68.1 79.1 60.2 34.7 66.7

97.5%
95.5% 97.6% 97.0% 99.9% 97.0% 98.8% 98.2% 98.9% 95.0%

VisionZip ‡
62.4 65.9 1778 87.6 67.9 79.9 60.8 37.2 67.8

98.9%
97.2% 97.1% 96.5% 101.4% 96.7% 99.8% 99.2% 106.0% 96.6%

Retain 320 Tokens (↓ 88.9%)

VisionZip
59.3 63.1 1702 82.1 67.3 76.2 58.9 35.3 63.4

94.5%
92.3% 92.9% 92.4% 95.0% 95.9% 95.1% 96.1% 100.5% 90.3%

VisionZip ‡
61.0 64.4 1770 86.2 67.5 78.4 59.3 38.0 65.9

97.6%
95.0% 94.8% 96.1% 99.8% 96.2% 97.9% 96.7% 108.3% 93.9%

Retain 160 Tokens (↓ 94.4%)

VisionZip
55.5 60.1 1630 74.8 68.3 71.4 56.2 36.1 58.3

91.5%
86.4% 88.5% 88.5% 86.6% 97.3% 89.1% 91.7% 102.8% 83.0%

VisionZip ‡
58.2 63.9 1699 83.4 67.5 75.6 57.3 37.7 62.9

95.0%
90.7% 94.1% 92.2% 96.5% 96.2% 94.4% 93.5% 107.4% 89.6%

Table 13. Performance of VisionZip on LLaVA NeXT 7B. The vanilla number of visual tokens is 2880. The first line of each method
shows the raw benchmark accuracy, and the second line is the proportion relative to the upper limit. The last column is the average value.
VisionZip‡ indicates that fine-tuning the multimodal projector with 1/10 LLaVA-1.5 datasets. SEED-I represents SEED-IMG, which uses
the metric from LMMs-Eval [65].

GQA. The GQA [19] benchmark evaluates visual scene un-
derstanding and reasoning using scene graphs, questions,
and images. It includes spatial attributes and object features,
with questions designed to test interpretation and reasoning.

POPE. POPE [29] evaluates Object Hallucination in mod-
els using binary questions on object presence in images.
Metrics like Accuracy, Recall, Precision, and F1 Score mea-
sure hallucination levels across three sampling strategies,
offering precise assessments.

MME. The MME [11] benchmark evaluates model perfor-

mance across 14 subtasks targeting perceptual and cogni-
tive abilities. Using manually designed instruction-answer
pairs, MME minimizes data leakage for fair assessment.

VQA-V2. VQA-V2 [13] tests visual perception using
265,016 images of real-world scenes and objects paired
with open-ended questions. Each question includes 10
ground truth answers from human annotators for accurate
evaluation.

TextVQA. TextVQA [47] evaluates a model’s ability to
interpret visual elements and embedded text in images



Method GQA MMB MME POPE SQA VQAV2 VQAText MMMU SEED-I Avg.

Upper Bound, 2880 Tokens (100%)

Vanilla 13B
65.4 70.0 1901 86.2 73.5 81.8 64.3 36.2 71.9

100%
100% 100% 100% 100% 100% 100% 100% 100% 100%

Vanilla 7B
64.2 67.9 1842 86.4 70.2 80.1 61.3 35.1 70.2

97.2%
98.2% 96.3% 96.9% 100.2% 95.5% 97.9% 95.3% 97.0% 97.6%

Retain 640 Tokens (↓ 77.8%)

VisionZip
63.0 68.6 1871 85.7 71.2 79.7 62.2 36.4 68.8

97.5%
96.3% 98.0% 98.4% 99.4% 96.7% 96.9% 96.7% 100.5% 95.7%

VisionZip ‡
63.7 66.6 1829 86.3 73.2 81.2 64.4 38.1 69.2

98.8%
97.4% 95.1% 96.2% 100.1% 99.6% 99.3% 100.2% 105.2% 96.2%

Retain 320 Tokens (↓ 88.9%)

VisionZip
60.7 67.2 1805 82.0 70.3 76.8 60.9 35.6 65.2

94.7%
92.8% 96.0% 95.0% 95.1% 95.6% 93.9% 94.7% 98.3% 90.7%

VisionZip ‡
62.5 66.9 1861 85.7 72.7 80.0 63.2 36.9 67.9

97.8%
95.6% 95.6% 97.9% 99.4% 98.9% 97.8% 98.3% 101.9% 94.4%

Retain 160 Tokens (↓ 94.4%)

VisionZip
57.8 64.9 1739 76.6 69.3 72.4 58.4 37.0 61.1

91.3%
88.4% 92.7% 91.5% 88.9% 94.3% 88.5% 90.8% 102.2% 84.8%

VisionZip ‡
59.7 65.3 1766 84.0 72.0 77.6 60.8 36.0 64.4

94.6%
91.3% 93.3% 92.9% 97.4% 98.0% 94.9% 94.6% 99.4% 89.6%

Table 14. Performance of VisionZip on LLaVA NeXT 13B. The vanilla number of visual tokens is 2880. The first line of each method
shows the raw benchmark accuracy, and the second line is the proportion relative to the upper limit. The last column is the average value.
VisionZip‡ indicates that fine-tuning the multimodal projector with 1/10 LLaVA-1.5 datasets. SEED-I represents SEED-IMG, which uses
the metric from LMMs-Eval [65].

through tasks requiring reasoning with textual information
for accurate answers.

B.1.3. Additional Experiments for LLaVA-1.5

Effectiveness on 13B. In the main paper, we demonstrate
the effectiveness of our model on 7B in Table 1, and we
show the effectiveness of our model on 13B in this sec-
tion. As shown in Table 10, we conduct our proposed Vi-
sionZip on 11 widely used evaluation benchmark. Due
to the small size of LLaVA-Bench (LLaVA Wild Bench)
and MMVeT, as well as the observation that their results
can sometimes be unstable, we have excluded them from
the average calculation in the last column. This decision
was made despite our method demonstrating strong perfor-
mance on both benchmarks. Instead, the average is calcu-
lated exclusively based on the 9 benchmarks. As shown
in Table 10, we evaluate our method on three configura-
tions of the vision token count (192, 128, and 64). The re-
sults show that even when retaining only 64 visual tokens,
our method achieves 93.7% performance without requiring
additional training time. In the efficient-tuning mode, this
performance increases to 94.8%. Furthermore, when retain-
ing 128 or 192 tokens, our method shows almost no perfor-
mance loss in the 13B model.

Effectiveness on OCR Benchmarks. To demonstrate
the effectiveness of our VisionZip on OCR-heavy bench-
marks, we select the widely used InfoVQA and DocVQA
datasets. As shown in Table 11, the results indicate that Vi-
sionZip does not experience significant performance degra-
dation under OCR-heavy settings.
Effectiveness on Training Stage. Our proposed method
can also be applied during the training stage to reduce token
length, thereby saving memory usage and training time. As
shown in Table 12, we conduct experiments on three differ-
ent vision token count configurations (192, 128, and 64).
We apply our proposed VisionZip during the fine-tuning
stage [33], with all hyperparameters, except for the batch
size, following the vanilla training settings. All experiments
are conducted on 8 Nvidia 3090 24G GPUs with a batch
size of 4. To demonstrate the effectiveness of VisionZip in
training mode, we evaluate it on 12 benchmarks and present
the results. However, when calculating the average, we ex-
clude LLaVA-Bench (LLaVA Wild Bench) and MMVet due
to its small size and the observation that its results can be
unstable, even though our method performs strongly on it.
The results show that even when the number of tokens is re-
duced to 128, 99.6% of the performance is retained. When
retaining 192 tokens, performance even improves by 0.6%.



Method GQA MMB MME POPE SQA VQAV2 VQAText MMMU SEED-I Avg.

Upper Bound, 576 Tokens (100%)

Vanilla 7B
62.4 69.3 1841 85.8 70.7 80.4 65.2 36.1 69.7

100%
100% 100% 100% 100% 100% 100% 100% 100% 100%

Retain 192 Tokens (↓ 66.7%)

VisionZip
60.3 68.9 1846 82.3 70.1 79.1 63.4 36.1 67.5

98.2%
96.6% 99.4% 100.2% 95.9% 99.2% 98.4% 97.2% 100% 96.8%

VisionZip ‡
61.6 67.2 1804 85.5 70.2 78.9 63.6 36.1 67.0

98.3%
98.7% 97.0% 98.0% 99.7% 99.3% 98.1% 97.5% 100% 96.1%

Retain 128 Tokens (↓ 77.8%)

VisionZip
58.7 68.1 1841 78.5 70.0 77.5 61.3 34.8 65.6

96.0%
94.1% 98.3% 100% 91.5% 99.0% 96.4% 94.0% 96.4% 94.1%

VisionZip ‡
60.0 67.0 1810 83.2 70.1 78.3 61.6 34.8 65.9

96.7%
96.2% 96.7% 98.3% 97.0% 99.2% 97.4% 94.5% 96.4% 94.5%

Retain 64 Tokens (↓ 88.9%)

VisionZip
55.8 65.9 1737 69.6 70.7 73.9 59.1 35.6 61.7

92.2%
89.4% 95.1% 94.4% 81.4% 100% 91.9% 90.6% 98.6% 88.5%

VisionZip ‡
57.7 66.3 1779 80.0 71.0 75.9 60.1 36.2 62.6

95.0%
92.5% 95.7% 96.6% 93.2% 100.4% 94.4% 92.2% 100.3% 89.8%

Table 15. Performance of VisionZip on mini-Gemini 7B. The vanilla number of visual tokens is 576. The first line of each method
shows the raw benchmark accuracy, and the second line is the proportion relative to the upper limit. The last column is the average value.
VisionZip‡ indicates that fine-tuning the multimodal projector with 1/10 LLaVA-1.5 datasets. SEED-I represents SEED-IMG, which uses
the metric from LMMs-Eval [65].

We believe the reason is that reducing the redundancy of in-
put visual tokens and providing only the more informative
ones minimizes interference from less informative tokens.
This allows the model to focus more on the informative to-
kens during training, enhancing visual understanding and
leading to improved performance.

B.1.4. Additional Experiments for LLaVA-NeXT

In the main paper Table 2, we present the performance
of VisionZip on LLaVA-NeXT across several evaluation
benchmarks. The complete benchmark results are provided
in Table 13. In this table, we only display the LLaVA
NeXT 7B results for these stable benchmarks, and the re-
sults demonstrate that our proposed VisionZip consistently
delivers strong performance.

To further demonstrate the effectiveness of our Vi-
sionZip, we present the results on the LLaVA-NeXT 13B
model. As shown in Table 14, our method demonstrates ex-
cellent scalability. As the size of the LLM increases, the
performance of VisionZip does not degrade. Our proposed
VisionZip is highly adaptable to various sizes and types
of LLMs, further highlighting the effectiveness of our ap-
proach. Notably, when retaining only 640 tokens, which
eliminating 77.8% of the tokens, our method enables the
13B model to outperform the 7B model in training-free
mode. Furthermore, the generation speed of our 13B model

is faster, and we will provide detailed speed in the next sec-
tion.

B.1.5. Additional Experiments for Mini-Gemini
In the main paper, Fig. 4 demonstrates that our method out-
performs approaches like SparseVLM and FastV in terms
of performance. Furthermore, as the number of retained to-
kens decreases, the performance advantage of our method
becomes increasingly significant. In this section, we pro-
vide a detailed analysis of the results achieved by our
method.

As shown in Table 15, the results indicate that after re-
moving 88.9% of the tokens, our method can still retain
over 90% of its performance in the training-free mode. Fur-
thermore, with fine-tuning, its performance can reach up to
95%. When discarding 66.7% of the visual tokens, which
is more than half, the performance remains virtually unaf-
fected. These results further highlight the significant redun-
dancy present in visual tokens.

B.1.6. Ablation Study

Impact of Fine-Tuning Dataset Compatibility We use Vi-
sionZip to efficiently fine-tune the cross-modality projector,
addressing the gap caused by reduced visual tokens. En-
suring dataset compatibility with the original model is cru-
cial for optimal performance. To evaluate this, we compare



Dataset GQA MMB MME SQA VQAV2 VQAText MMMU Avg.
Retain 640 Tokens (↓ 77.8%)

LLaVA-1.5 62.4 65.9 1778 67.9 79.9 60.8 37.2 98.9%
LLaVA-NeXT 63.0 66.8 1738 68.4 80.1 61.2 38.8 99.3%

Retain 320 Tokens (↓ 88.9%)

LLaVA-1.5 61.0 64.4 1770 67.5 78.4 59.3 38.0 97.6%
LLaVA-NeXT 61.6 64.7 1771 67.5 78.8 60.1 36.3 97.3%

Retain 160 Tokens (↓ 94.4%)

LLaVA-1.5 58.2 63.9 1699 67.5 75.6 57.3 37.7 95.2%
LLaVA-NeXT 58.4 63.2 1763 68.0 76.0 58.2 36.9 95.7%

Table 16. Impact of Fine-Tuning Dataset Compatibility. The
first column indicates which dataset was used to sample 1/10 of
the data for fine-tuning the multimodality projector.

the effects of using 1/10 of the LLaVA 1.5 and LLaVA-
NeXT datasets to fine-tune the LLaVA-NeXT model across
three token count configurations (640, 320 and 160). As
shown in Table 16, improving dataset compatibility results
in minimal gains (less than 0.5%), with performance on
some benchmarks even declining. These findings suggest
that for efficient tuning to address token reduction, the ba-
sic 1/10 LLaVA 1.5 dataset is sufficient. The results further
demonstrate that the performance gains of VisionZip‡ in
Table 1 and Table 2 of the main text are not attributable to
additional knowledge acquired through continued training.
Instead, these improvements arise from adaptation to the
sudden reduction in tokens, which helps bridge the gap be-
tween the visual and LLM spaces. This finding aligns with
our motivation outlined in Sec. 2.4.

B.2. Video Understanding
B.2.1. Evaluation Benchmark

TGIF-QA. TGIF-QA [20] extends ImageQA to videos with
165,000 question-answer pairs based on GIFs. It includes
three VideoQA tasks—repetition count, repeating action,
and state transition—requiring spatio-temporal reasoning,
plus frame QA tasks answerable from single frames.

MSVD-QA. MSVD-QA [56], based on the MSVD dataset,
features 1,970 video clips and 50.5K question-answer pairs.
Covering diverse topics, it supports video question answer-
ing and captioning with open-ended questions in five cate-
gories: what, who, how, when, and where.

MSRVTT-QA. MSRVTT-QA [56] includes 10,000 video
clips and 243,000 question-answer pairs, emphasizing
video understanding and reasoning. Questions, categorized
into what, who, how, when, and where, require models to
process visual and temporal information.

ActivityNet-QA. ActivityNet-QA [62] consists 58,000
human-annotated question-answer pairs from 5,800 Activ-
ityNet videos. Covering motion, spatial, and temporal
relationships, it evaluates VideoQA models on long-term
spatio-temporal reasoning.

B.2.2. Future Direction
With the development of LLMs and VLMs, video under-
standing has become a popular research direction. Whether
the goal is for VLMs to comprehend longer videos or to
achieve precise localization within videos, enabling the in-
put of more frames within limited memory is both important
and critical.

However, existing methods process a single frame into
at least 256 tokens, which hinders the ability to input more
frames. With our approach, VisionZip, the number of video
tokens can be reduced by 5-10 times before being input into
the LLM. This reduction allows the model to process 5-10
times more frames within the same memory constraints. For
example, if a model could originally handle only 1 hour of
video, VisionZip enables it to process 5-10 hours of video,
significantly enhancing the application value of VLMs in
video understanding.

As shown in Fig. 8, we select 3-minute video clips from
Zootopia, a well-known cartoon, and ask the model to de-
scribe it. The results show that VideoLLaVA tends to de-
scribe a single frame in detail, lacking an overall under-
standing of the video, as it can only encode an 8-frame
video. In contrast, our VisionZip can encode 10× more
video frames without increasing the token count, signifi-
cantly enhancing the model’s ability to understand longer
videos.

B.3. Efficiency Analysis
In this section, we provide additional results highlighting
the efficiency gains brought by VisionZip.

CUDA Memory Save. We conduct experiments on the
LLaVA-NeXT 13B model, retaining only 320 visual to-
kens. Additionally, to better illustrate the memory con-
sumption changes introduced by this process, we simulta-
neously present the performance variations alongside the
CUDA memory changes in ScienceQA. The result aligns
with Table 8 in the main paper. As shown in Table 17,
the third row demonstrates that using VisionZip can reduce
CUDA memory consumption by more than 20%. Addition-
ally, employing 8-bit and 4-bit quantization further reduces
memory usage. Moreover, our method integrates seam-
lessly with quantization techniques, and the performance of
the quantized model is comparable to the original results.

Training Time Save. Our proposed VisionZip can also
reduce training time. We conducted an experiment on
LLaVA-NeXT 7B, retaining 640 visual tokens. As shown
in Table 18, using VisionZip during the training stage sig-
nificantly reduces training time by 2× and achieves better
performance compared to applying VisionZip only during
the inference stage.

Inference Time Save. To demonstrate the relationship be-
tween the number of remaining tokens and inference time,



Figure 8. Advantage of VisionZip in video understanding task. With the same visual token length, using VisionZip allows encoding
more frames, significantly enhancing the model’s capacity to understand longer video sequences and capture more detailed information.

Method Memory GQA MMB MME POPE SQA VQAV2 VQAText MMMU SEED-I Avg.

Upper Bound, 2880 Tokens (100%)

Vanilla 13B 36721Mb
65.4 70.0 1901 86.2 73.5 81.8 64.3 36.2 71.9

100%
100% 100% 100% 100% 100% 100% 100% 100% 100%

Vanilla 7B 18952Mb
64.2 67.9 1842 86.4 70.2 80.1 61.3 35.1 70.2

97.2%
98.2% 96.3% 96.9% 100.2% 95.5% 97.9% 95.3% 97.0% 97.6%

Retain 320 Tokens (↓ 88.9%)

VisionZip 28810Mb
60.7 67.2 1805 82.0 70.3 76.8 60.9 35.6 65.2

94.7%
92.8% 96.0% 95.0% 95.1% 95.6% 93.9% 94.7% 98.3% 90.7%

VisionZip-8bit 16632Mb
60.6 67.1 1798 81.4 70.8 76.8 60.5 37.0 65.4

95.0%
92.7% 95.9% 94.6% 94.4% 96.3% 93.9% 94.1% 102.2% 91.0%

VisionZip-4bit 10176Mb
60.3 65.1 1773 82.1 70.3 76.6 60.0 36.1 65.1

94.0%
92.2% 93.0% 93.3% 95.2% 95.6% 93.6% 93.3% 99.7% 90.5%

Table 17. Performance and Memory of VisionZip on LLaVA NeXT 13B with the Quantization. The vanilla number of visual tokens
is 2880. The first line of each method shows the raw benchmark accuracy, and the second line is the proportion relative to the upper limit.
The last column is the average value. SEED-I represents SEED-IMG, which uses the metric from LMMs-Eval [65]. The memory refers to
the practical CUDA memory usage on a single Nvidia A800 GPU for SQA.

we conduct experiments on LLaVA-NeXT 13B. We config-
ured three vision token counts: 640, 320, and 160, respec-
tively. We recorded the prefilling time and the actual testing

time on the benchmark. Specifically, we use the TextVQA
dataset to conduct the time measurements. As shown in Ta-
ble 19, by using VisionZip to retain 640 tokens, the 13B



Method Time Memory GQA MMB MME POPE SQA VQAV2 VQAText MMMU SEED-I Avg.

Upper Bound, 2880 Tokens (100%)

Vanilla 7B 33.8h 63558Mb
64.2 67.9 1842 86.4 70.2 80.1 61.3 35.1 70.2

100%
100% 100% 100% 100% 100% 100% 100% 100% 100%

Retain 640 Tokens (↓ 77.8%)

VisionZip-Inference
61.3 66.3 1787 86.3 68.1 79.1 60.2 34.7 66.7

97.5%
95.5% 97.6% 97.0% 99.9% 97.0% 98.8% 98.2% 98.9% 95.0%

VisionZip-Train 15.9h 35326Mb
62.5 67.1 1728 86.0 70.2 80.6 64.1 35.1 67.8

99.0%
97.4% 98.8% 93.8% 99.5% 100% 100.6% 104.6% 100% 96.6%

Table 18. Performance and Training Time of VisionZip on LLaVA NeXT 7B. The vanilla number of visual tokens is 2880. The first
line of each method shows the raw benchmark accuracy, and the second line is the proportion relative to the upper limit. The last column is
the average value. SEED-I represents SEED-IMG, which uses the metric from LMMs-Eval [65]. The time refers to the practical Training
time usage on 8 Nvidia A800 GPUs for training.

Method Count Prefilling Total GQA MMB MME POPE SQA VQAV2 VQAText MMMU SEED-I Avg.

Vanilla 13B 2880 129.4ms 2506s
65.4 70.0 1901 86.2 73.5 81.8 64.3 36.2 71.9

100%
100% 100% 100% 100% 100% 100% 100% 100% 100%

Vanilla 7B 2880 54.2ms 1598s
64.2 67.9 1842 86.4 70.2 80.1 61.3 35.1 70.2

97.2%
98.2% 96.3% 96.9% 100.2% 95.5% 97.9% 95.3% 97.0% 97.6%

VisionZip 13B 640 48.2ms 1219s
63.0 68.6 1871 85.7 71.2 79.7 62.2 36.4 68.8

97.5%
96.3% 98.0% 98.4% 99.4% 96.7% 96.9% 96.7% 100.5% 95.7%

VisionZip 13B 320 30.3ms 995s
60.7 67.2 1805 82.0 70.3 76.8 60.9 35.6 65.2

94.7%
92.8% 96.0% 95.0% 95.1% 95.6% 93.9% 94.7% 98.3% 90.7%

VisionZip 13B 160 23.9ms 888s
57.8 64.9 1739 76.6 69.3 72.4 58.4 37.0 61.1

91.3%
88.4% 92.7% 91.5% 88.9% 94.3% 88.5% 90.8% 102.2% 84.8%

Table 19. Performance of VisionZip on LLaVA NeXT 13B. The vanilla number of visual tokens is 2880. The first line of each method
shows the raw benchmark accuracy, and the second line is the proportion relative to the upper limit. The last column is the average value.
“Prefilling” represents the prefilling time, and “Total” represents the actual testing time of the model on the TextVQA benchmark.

model achieves faster inference than the 7B model while
maintaining superior performance.

C. Related Work

Vision-Language Models. Building on the success of
LLMs [1, 2, 7, 9, 25, 28, 43, 51, 69], VLMs have made
significant advancements [18, 24, 31, 33–35, 50, 52, 58, 67,
70]. Popular VLM models, such as LLaVA [33] and mini-
Gemini [31], process visual tokens through a projector be-
fore inputting them into the LLM as a sequence. However,
real-world images are typically high-resolution and require
a large number of tokens. For example, LLaVA-NeXT pro-
cesses 672× 672 images into more than 2,000 tokens [34].
Moreover, handling videos or multiple images significantly
increases token requirements [17, 30, 32, 40, 48, 49]. .
Hence, it’s essential to discuss more efficient ways to ex-
tract information from visual tokens, rather than merely in-
creasing their length.
Efficient Large Language Models. In the field of large
language models (LLMs), various strategies have been de-
veloped to reduce tokens, thereby accelerating inference

and optimizing key-value (KV) cache compression [15].
For example, StreamingLLM [54] decreases the KV cache
size by retaining only the attention sinks and the most recent
tokens. FastGen [12] introduces an adaptive method for
managing the KV cache, dynamically optimizing memory
usage by adjusting retention strategies based on the behav-
ior of attention heads. Similarly, the Heavy-Hitter Oracle
(H2O) [68] employs a scoring mechanism based on cumu-
lative attention to selectively prune key-value pairs during
the generation process. These methods aim to reduce token
redundancy and enhance the efficiency of inference opera-
tions in LLMs.

Efficient Vision Language Models. Recently, some
studies [16, 46, 53] have also recognized the redundancy
in visual tokens and proposed various methods to address
it. Specifically, EVLGen [21] utilizes the token merging
strategy, while LLaVA-PruMerge [44] employs a clustering
method to reduce the tokens. Additionally, several recent
works [6, 55, 66] identify redundancy based on the rela-
tively low attention that LLM text tokens assign to visual
tokens. Furthermore, these studies primarily achieve token



reduction or KV cache compression by leveraging attention
mechanisms between text and visual tokens during the LLM
forward process. In contrast to these works, we find that the
visual tokens generated by popular vision encoders exhibit
significant redundancy. Our approach removes this redun-
dancy before the tokens are input into the LLM. Addition-
ally, in Sec. 4 of the main paper, we provide a thorough
comparison and analysis of our method against these text-
relevant approaches.

D. Visualization
D.1. Visualization of Redundancy
To further show the redundancy in popular vision encoders,
we include additional examples from the COCO train2017
dataset. This dataset is a key component of the LLaVA
1.5 fine-tuning dataset and an essential part of many vision
datasets. As shown in Fig. 9 Fig. 10 and Fig. 11, the vi-
sualization results indicate that only a few tokens receive
high attention and contain substantial amounts of informa-
tion, while most visual tokens receive minimal attention and
contain limited information. This visualization highlights
the significant redundancy present in the visual tokens.

D.2. Visualization of Attention Distribution Change
In Sec. 4 of the main text, we discuss the reasons behind the
redundancy in visual tokens. In this section, we present a
comprehensive analysis of the changes in attention within
the CLIP model. As shown in Fig. 12 and Fig. 13 attention
in the early layers is broadly distributed across the image.
However, by the middle layers, it rapidly converges onto
a few tokens. In the deeper layers, attention and informa-
tion become concentrated on a small set of dominant tokens,
reaching peak concentration by the 23rd layer, which is used
for visual token extraction for the LLM. Besides, in the fi-
nal layer, attention is more dispersed as these tokens align
with the CLIP text branch via contrastive loss, potentially
limiting their ability to represent the original image.

D.3. Visualization of Feature Misalignment
In Fig. 6 of the main text, we show the phenomenon of fea-
ture misalignment. To further demonstrate that this phe-
nomenon is widespread, we observe it across additional
COCO images.

As shown in Fig. 14, in the first three columns, we se-
lect a token (red point) from the main subject of the figure
and illustrate the attention to that token, and the last column
shows that the attention score for the whole figure. The re-
sults show that the attention of the selected token does not
focus on semantically relevant tokens but instead on dom-
inant tokens, highlighting the phenomenon of feature mis-
alignment. Hence, when text-relevant methods like Spar-
seVLM [66] select tokens based on semantic relationships,
they can identify semantically relevant tokens. However,

these tokens contain less information compared to the dom-
inant tokens, which aggregate information from the entire
image.

In addition, to improve visualization and analysis, we
developed a Gradio demo, as shown in Fig. 15. The cor-
responding code is provided on the GitHub page.



Figure 9. Visualization of Redundancy in the CLIP Model



Figure 10. Visualization of Redundancy in the CLIP Model



Figure 11. Visualization of Redundancy in the SigLIP Model
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Figure 12. Visualization of Attention Distribution Change
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Figure 13. Visualization of Attention Distribution Change



Figure 14. Visualization of Feature Misalignment. The red point represents the selected token, while the heatmaps in the first three
columns illustrate the attention relationships to the selected token. The last column displays the attention map for the entire image.
The results shows that the attention of the selected token does not focus on semantically similar tokens but instead on dominant tokens,
highlighting the phenomenon of feature misalignment.



Figure 15. Gradio demo to analysis the visual redundancy and the feature misalignment
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