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The supplementary material is organized as follows:

• Section 1 provides details of dataset, including hardware configuration, unpolarized RGB image acquisition, reflection

estimation, and alignment.

• Section 2 provides details of experiments, including implementation details, number of parameters, and running time.

• Section 3 provides additional results, including training on synthetic datasets, comparisons with more baselines, and

more visual results.

• Section 4 provides further discussions, particularly addressing the limitations and failure cases.

1. Dataset Details
In this section, we provide a detailed overview of the PolaRGB dataset, including the hardware configuration, the process

of capturing RGB images, and the method for estimating reflection images.

1.1. Hardware configuration

To capture high-quality polarization data, we employed the BFS-U3-51S5PC-C USB 3.1 Blackfly®S Polarized Color

Camera from Edmund Optics. This camera offers adjustable aperture and focal length, enabling precise control over image

quality. For stability, the camera was mounted on a tripod during all captures. Instead of fixing the camera parameters, we

use the automatical setting to ensure clear and sharp images under varying conditions, aligning with real-world practices and

challenges.

For reflective surfaces, we chose acrylic panels with a high transmittance rate of 95%. This design minimizes secondary

reflections caused by material thickness while maintaining a realistic representation of reflection scenarios. The effectiveness

of this setup is evident in our real-world reflection removal results, particularly in museum and gallery environments, where

complex reflections often occur.

We randomly position the semi-reflective glass plate in front of the camera, with the distance ranging from 5 cm to 100

cm and the angle randomly adjusted.

1.2. Obtain RGB image

We use a division-of-focal-plane (DoFP) polarization camera to capture polarized images. By combining four angles (0◦,

45◦, 90◦, 135◦), we generate an approximate RGB image I0, to mimic the output of a standard RGB camera, avoiding the

need for alignment with RGB images.

1.3. Reflection estimation

We provide our process for estimating reflection images and summarize it in Algorithm 1. Examples of estimated reflection

are shown in Fig. 1.

Given a transmission image T and a mixed image M , our goal is to estimate the reflection image Rbest, which represents

the portion of the image containing the reflected layer, excluding the transmission components. The key to our approach is

iterating over a range of weight factors and optimizing the estimated reflection based on feature matching and edge detection.

The detailed steps are as follows:
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Iterative Weight Adjustment. We begin by defining a weight factor j that ranges from 0.6 to 1.2 emperically, with a step

size Δj = 0.02. In our work, the parameter j is empirically set between 0.6 and 1.2 to better recover the structure of residual

reflection, especially in cases where the standard weight of 1 does not adequately capture the reflection’s structure.

For each value of j, we compute a reflection candidate Rj using the formula Rj = |M − j · T |. This step allows us to

explore different weightings of the transmission and mixed images to uncover the best possible reflection estimate.

Edge Detection. We apply Canny edge detection to both the reflection candidate Rj and the transmission image T to

reduce noise and minimize color variations. This step highlights key structural features, making the feature matching process

more robust and accurate.

Feature Matching. We employ the ORB (Oriented FAST and Rotated BRIEF) feature detector to extract keypoints and

descriptors from the edge-detected images. The BFMatcher (Brute Force Matcher) is then used to find the best matches

between the reflection candidate Rj
edges and the transmission image Tedges. The number of matches serves as an indicator of

the quality of the match, with fewer matches signaling a better estimate of the reflection.

Final Output. After performing feature matching for each weight factor j, we select the reflection image Rj with the

lowest number of accurate matches. This reflection image is considered the best estimate, as it is the one that deviates the

most from the transmission image, capturing the true reflection. The selected reflection is then set as Rbest.

This method provides a robust solution to the challenging problem of reflection estimation by leveraging iterative weight

adjustment, edge detection, and feature matching. By working directly in the raw image domain, we are able to avoid the

potential pitfalls of image processing artifacts like demosaicing and ISP effects.

Algorithm 1: Reflection Estimation Algorithm

Input: Transmission image T , mixed image M , weight range j ∈ [0.6, 1.2], step size Δj
Output: Optimized reflection images Rbest

// Initialize best match score
best matches ← ∞ ;

// Loop over weight factor j
For each j ∈ [0.6, 1.2] with step Δj
// Compute reflection image Rj

Rj ← |M − j · T | ;

// Apply Canny edge detection

Rj
edges, Tedges ← Canny(Rj),Canny(T ) ;

// Feature matching using ORB and BFMatcher

desR ← ORB detect and compute(Rj
edges) ;

desT ← ORB detect and compute(Tedges) ;

matches ← BFMatcher(desR, desT ) ;

// Get the number of matches
num matches ← len(matches) ;

// Update best match if current is better
if num matches < best matches then

best matches ← num matches ;

Rbest ← Rj ;

Save Rbest to output.

1.4. Alignement

We employ three key techniques to ensure high-quality alignment of transmission and mixed images. First, during the

capture phase, we carefully minimize motion from both the camera and the scene, effectively reducing background blur

and preserving image clarity. Second, after the capture process, we conduct a manual selection step to filter out images

with noticeable motion blur, ensuring that only the sharpest and most stable images are retained. Finally, we apply a robust

algorithmic alignment to address image shifts caused by glass refraction. This alignment operates directly on raw Bayer

sub-images by estimating homography and applying affine transformations, resulting in precise and consistent alignment.

These techniques together enable us to produce well-aligned image pairs critical for downstream tasks.
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Figure 1. Visualization of estimated reflection. We also show the captured mixed and transmission images.



2. Experimental Details
2.1. Detail implementations

In our framework, we utilize a prior generation model alongside a transformer-based reflection removal model. For the

prior generation, we adopt the standard DDPM [2], conditioning it on polarization information. For the reflection removal

component, we employ the widely used Restormer [7] as the backbone and modify its input channels to accommodate

polarization-based inputs. This design ensures effective integration of polarization information across both stages.

To ensure a fair comparison, we use only the transmission layer as the supervision signal for all algorithms, without relying

on the reflection layer. This is because the reflection layer is estimated, and there may be some errors in this estimation

process. Using the estimated reflection layer as a supervision signal could introduce inaccurate labels, which would affect the

model training process. Additionally, the estimation of the reflection layer depends on multiple factors, such as polarization

information and other prior assumptions, which may vary across different methods, further complicating the fairness of the

comparison. Therefore, to eliminate these potential confounding factors, we chose to use only the transmission layer as the

sole supervision signal.

2.2. Parameters and running time

The overall runtime of our model is measured at 0.9148 seconds on a single GTX4090Ti with a spatial resolution 1224 ×
1024, demonstrating its efficiency in handling complex tasks. Specifically, the diffusion sampling process for prior generation

is completed in just 0.0698 seconds. Meanwhile, the reflection removal stage, which involves more intensive processing, takes

0.8450 seconds. As observed, even at a resolution of 1k, our model maintains a fast processing speed. Our design is flexible,

allowing for the replacement of the reflection removal backbone. In the future, we will explore more lightweight approaches

to further accelerate the model’s performance.

In terms of computational complexity, the diffusion component, using a U-Net, has 2.62M parameters and a computational

cost of 0.0423 GFLOPs (at a 128 × 128 patch size). The reflection removal stage, based on Restormer [7], has 30.03M

parameters and a computational cost of 72.47 GFLOPs (also at 128 × 128 patch size).

3. More Results
In this section, we present additional results, including training on synthetic datasets, comparisons with a broader range

of methods, and more qualitative comparisons.

3.1. Training with synthetic dataset.

To demonstrate the effectiveness of our proposed real-world dataset, we train the reflection removal methods with synthetic

polarization dataset used in ReflectNet [6]. The dataset simulates polarized images with reflections by modeling HDR

processes, introducing displacement perturbations, and simulating glass curvature. Using the official implementation of

ReflectNet, we synthesize data on the Places dataset.

We train both the Kim et al. [4] and the ours model using this synthetic dataset and evaluate performance on our captured

real-world dataset. Table 1 presents a quantitative comparison of the results, highlighting the significant performance gap

between models trained on synthetic versus real-world data. Our findings show that synthetic data alone cannot fully model

intricate reflections and interactions, reinforcing the need for real-world data to develop robust reflection removal methods.

Table 1. Quantitative comparison of reflection removal performance using models trained on synthetic and real-world data.

Method Training Data PSNR↑ SSIM↑ LPIPS↓ Q-align↑

Kim et al. [4]
Synthetic [6] 16.32 0.6210 0.4974 3.5271

PolaRGB (Ours) 20.67 0.8399 0.2714 3.7148

PolarFree (Ours)
Synthetic [6] 17.80 0.7039 0.3395 3.6387

PolaRGB (Ours) 22.44 0.8681 0.1325 3.8867

3.2. Comparison with more methods

To further evaluate the effectiveness of our method, we compare it against several traditional reflection removal approaches

on our real-world dataset. The compared methods include Fraid et al. [1], Schechner et al. [5], and ReflectNet [6].



For a fair comparison, we use the standard input format required by each method. Specifically, the methods proposed by

Schechner et al. [5] and ReflectNet [6] leverage polarized images as input, utilizing polarization information to enhance their

performance in separating reflection and transmission layers. In contrast, the method by Fraid et al. [1] operates solely on

RGB images without the benefit of polarization cues.

Table 2 presents the quantitative results of this comparison. Our method demonstrates superior performance across all

metrics, significantly outperforming the other approaches. This highlights the effectiveness of our model in handling real-

world complexities and leveraging both the polarization information and our robust backbone design for reflection removal.

The results also emphasize the limitations of traditional methods, particularly those relying solely on RGB inputs, in

capturing and separating intricate reflection patterns present in real-world scenes. This comparison further underscores the

necessity of advanced techniques and real-world datasets to achieve state-of-the-art performance in reflection removal.

Table 2. Quantitative comparison of our method with traditional reflection removal approaches on the real-world dataset.

Method PSNR↑ SSIM↑ LPIPS↓ Q-align↑

Fraid et al. [1] 15.84 0.7514 0.2597 3.5508

Schechner et al. [5] 8.06 0.1176 0.8742 1.8262

ReflectNet et al. [6] 19.11 0.8334 0.2113 3.8027

PolarFree (Ours) 22.44 0.8681 0.1325 3.8867

3.3. Additional visual comparisons of final results

We present additional visualization results on polarization-based reflection removal in Fig. 2–4, with Kim et al. [4],

DSRNet [3], and RDRNet [8]. These examples demonstrate the effectiveness of our method across a variety of challenging

scenarios, including scenes with strong specular highlights, complex backgrounds, and intricate reflection patterns caused by

non-uniform glass surfaces.

In Fig. 5, we present additional reflection removal results in museum and gallery settings, which represent an important

application scenario for this task. From the results, it is evident that our method consistently outperforms existing approaches,

achieving a cleaner separation of reflection and transmission layers. In contrast, other methods face challenges in preserving

fine details when dealing with strong reflections and often struggle to handle scenes with highly textured or cluttered back-

grounds. These comparisons highlight the robustness of our model in addressing the complexities of real-world applications,

particularly in scenarios where accurate reflection removal is critical.

4. Further Discussions
Here, we discuss some of the limitations of our work.

Currently, our dataset generation relies on fixed glass sheets to produce reflections. However, real-world reflections are

often more complex, involving multi-layer reflections (which can cause ghosting), defocus, and color variations. While our

dataset covers a range of scenarios, the types of glass sheets used remain limited. In future work, we plan to include a wider

variety of glass types to better handle more complex reflection types.

Additionally, our method currently integrates polarization information in a relatively straightforward manner. We aim to

explore more efficient ways to leverage polarization data, such as embedding the imaging principles of polarization directly

into the network (e.g., similar to the unfold network approach). Moreover, the inclusion of polarization information is

orthogonal to many existing reflection removal priors based on intensity (such as defocus and ghosting). Future research will

explore how to jointly utilize these priors for improved reflection removal.

In Fig. 6, we showcase several particularly challenging scenarios where reflections cause significant information loss and

color distortion. Existing models fail in these situations, as reflected by their poor performance. Although our model still has

some limitations (e.g., poor recovery of highlights and slight color shifts), it outperforms previous methods by recovering

more information. Moving forward, we are considering the use of diffusion models or large language models (LLMs) to

better remove reflections and reconstruct the transmission layer.
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Figure 2. Qualitative comparisons on the PolaRGB dataset.
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Figure 3. Qualitative comparisons on the PolaRGB dataset.
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Figure 4. Qualitative comparisons on the PolaRGB dataset.
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Figure 5. Reflection removal results in museum and gallery scenarios without ground truth. Our method can handle highlights and intricate

reflections.
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Figure 6. Extremely challenging reflection removal scenarios, where reflections cause significant information loss and color distortion.

Existing models fail in these situations, while our method recovers more details, despite some remaining imperfections in highlight restora-

tion and slight color shifts.
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