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1. More results
More Results for Editing. SC-GS [3] introduces sparse control points and ARAP regularization,
allowing them to complete editing tasks by fixing some control points and moving other points. As
shown in Fig. 1, using SC-GS to edit the object is not easily controllable. For example, we want only
to edit the arm, but the leg is also moving. Furthermore, even by adding more fixed points, achieving
reasonable edits of movements is still challenging. As demonstrated in Figs. 2 and 3, we also compared
the extracted skeletons, skinning weights, and editing performance of our RigGS with those of AP-
NeRF [7] on more examples. Due to the different canonical shapes established by the AP-NeRF and
ours, the poses of the skeletons / skinning weights are different. We aligned the skeletons generated by
two methods to the same pose to create new poses for the objects. It can be observed that our method
generally yields more reasonable results with higher clarity. More edited animations are shown in the
submitted Video Demo.
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Figure 1. Editing by SC-GS [3]. The pink dots mark the fixed locations, while the white dots indicate the positions
to be edited. The green lines represent the trajectories of the edits.

More Results for Novel View Synthesis. We present the numerical results for each sequence in Table 1
and Table 2. Except for SC-GS [3], we can see our rendering quality is significantly better than that

*Corresponding author.
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Figure 2. Editing on the D-NeRF dataset.

of other methods. Additionally, we showcase more visual results in Fig. 4 and the complete motion
sequences in the Video Demo. Despite SC-GS having higher numerical accuracy, from Fig. 4, we can
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Figure 3. Editing on the DG-Mesh dataset.

see that it exhibits more artifacts compared to our method, such as in the wings of the “Bird” and the
legs of the “Horse”. Furthermore, when dealing with real data, the performance of SC-GS is notably
inferior to our method, as shown in the Video Demo.
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Figure 4. Novel view rendering on the DG-Mesh dataset.



Table 1. Comparisons with the state-of-the-art methods on the D-NeRF dataset [6]. The best and second-best
results are highlighted in bold and underlined.

Method Skeleton
Hook Trex JumpingJacks

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

D-NeRF [6] No 29.25 0.968 0.1120 31.75 0.974 0.0367 32.80 0.981 0.0381
TiNeuVox [2] No 31.45 0.971 0.0569 32.70 0.987 0.0340 34.23 0.986 0.0383

4D-GS [8] No 30.99 0.990 0.0248 32.16 0.988 0.0216 33.59 0.990 0.0242
SC-GS [3] No 39.87 0.997 0.0076 41.24 0.998 0.0046 41.13 0.998 0.0067

AP-NeRF [7] Yes 30.24 0.970 0.0500 32.85 0.980 0.0200 34.50 0.980 0.0300
Ours Yes 37.49 0.994 0.0136 38.40 0.998 0.0063 40.70 0.997 0.0069

Method Skeleton
Hellwarrior Mutant Standup

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

D-NeRF [6] No 25.02 0.955 0.0633 31.29 0.978 0.0212 32.79 0.983 0.0241
TiNeuVox [2] No 28.17 0.978 0.0706 33.61 0.982 0.0388 35.43 0.991 0.0230

4D-GS [8] No 31.39 0.974 0.0436 35.98 0.996 0.0120 35.37 0.994 0.0136
SC-GS [3] No 42.93 0.994 0.0155 45.19 0.999 0.0028 47.89 0.999 0.0023

AP-NeRF [7] Yes 27.53 0.960 0.0600 28.56 0.960 0.0300 31.93 0.970 0.0200
Ours Yes 41.21 0.989 0.0301 42.72 0.998 0.0057 44.37 0.998 0.0047

Table 2. Comparisons with the state-of-the-art methods on the DG-Mesh dataset [4]. The best and second-best
results are highlighted in bold and underlined.

Method Skeleton
Beagle Bird Duck

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

D-NeRF [6] No – – – 21.05 0.884 0.1890 32.71 0.982 0.0312
TiNeuVox [2] No 38.86 0.983 0.0287 25.69 0.934 0.0841 34.38 0.973 0.0291

4D-GS [8] No 42.15 0.990 0.0222 26.75 0.958 0.0443 36.69 0.984 0.0193
SC-GS [3] No 41.20 0.998 0.0054 32.55 0.980 0.0269 40.41 0.998 0.0047

AP-NeRF [7] Yes 38.70 0.984 0.0281 25.08 0.933 0.0827 34.17 0.973 0.0287
Ours Yes 39.74 0.998 0.0077 31.82 0.980 0.0263 39.84 0.997 0.0061

Method Skeleton
Girlwalk Horse Average

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

D-NeRF [6] No 31.15 0.989 0.0336 27.78 0.971 0.0573 28.17 0.957 0.0778
TiNeuVox [2] No 32.62 0.984 0.0341 28.18 0.960 0.0623 31.95 0.967 0.0477

4D-GS [8] No 34.15 0.989 0.0145 30.07 0.974 0.0357 33.96 0.979 0.0272
SC-GS [3] No 42.33 0.998 0.0084 38.29 0.990 0.0227 38.96 0.993 0.0136

AP-NeRF [7] Yes 32.63 0.984 0.0344 28.58 0.963 0.0561 31.83 0.967 0.0460
Ours Yes 40.98 0.997 0.0107 35.87 0.984 0.0337 37.65 0.991 0.0169



More Details on the ZJU-MoCap Dataset. We conduct more experiments on the real-captured dataset,
ZJU-MoCap dataset [5], and show the comparisons with AP-NeRF. Since our template-free method
performs reconstruction and rigging simultaneously, it faces challenges with videos captured by a fixed
camera. Improved results can be achieved when the camera is allowed to move. Therefore, we used 6
cameras (1, 5, 9, 13, 17, 21) to simulate monocular videos with camera movement. At each time, we
only select one image captured by one of these cameras. Additionally, to more accurately capture the
motion of the human body, we use frame-by-frame corresponding SMPL vertices to initialize the 3D
Gaussians and deformation fields. We show the comparisons on the other 17 cameras in Table 3 and
Fig. 5. We can see that the performance of our method is significantly better than AP-NeRF.
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Figure 5. Comparisons of skeleton, skinning weights and novel view synthesis with AP-NeRF on the ZJU-MoCap
dataset [5].

2. More Ablation Studies
Table 4 lists the numerical results of our ablation experiments. Additionally, we validated the effec-
tiveness of our skeleton-driven deformation module. We compared our method without MLP FΦ(γt(t))
for skinning weight or without pose-dependent detail deformation. From Table 4 and Fig. 6, we can
see these variants result in a slight decrease in rendering quality, indicating that these two modules are



Table 3. Comparisons of the average precision on the ZJU-MoCap dataset [5].

Method
377 386 387

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

AP-NeRF [7] 24.39 0.925 0.0827 28.94 0.932 0.0841 24.30 0.917 0.0961
Ours 33.78 0.983 0.0202 36.63 0.981 0.0285 31.25 0.971 0.0395

Method
392 393 394

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

AP-NeRF [7] 26.08 0.918 0.0983 24.53 0.908 0.1050 25.49 0.915 0.0943
Ours 34.06 0.975 0.0351 31.65 0.969 0.0391 33.87 0.974 0.0339

effective in matching details without changing the main parts of the deformation.

Table 4. Ablation studies of our method on the D-NeRF dataset [6].

Variants PSNR ↑ SSIM ↑ LPIPS ↓

w.o. 2D proj. loss Lt
˜proj

40.60 0.996 0.0108
Fixed weight wt

˜proj
40.68 0.996 0.0117

w.o. MLP for skin. 40.58 0.996 0.0112
w.o. detail def. 39.02 0.993 0.0163

Anisotropy 41.98 0.996 0.0080
Isotropy (Ours) 40.82 0.996 0.0112

Robustness of Skeleton Construction under Large Motion. To evaluate the robustness of our method
under large motion, we selected the sequence “393” from the ZJU-MoCap dataset. We tested the se-
quence using frames indexed as [0, k, 2k, ..., nk], where a larger value of k corresponds to greater mo-
tion. We set k = 1, 5, 10 and n = 65 and show the results in Fig. 7, which demonstrates the robustness
of our skeleton extraction method in handling large motions.
Failure Cases of Skeleton Construction. Our method is dependent on the quality of 2D skeleton
extraction and silhouettes. Although we proposes an adaptive weighting mechanism to mitigate the im-
pact of erroneous 2D skeletons, when a significant portion of frames contain inaccurate estimations, our
method fails to produce semantically plausible skeletal structures (Fig. 8 (a)). Developing higher-quality
2D skeleton extraction methods will greatly improve the quality of the resulting skeleton tree. Secondly,
since our automated rigging is inherently related to motions, when two adjacent regions exhibit no rela-
tive transformations over the input sequence, our method struggles to distinguish them, resulting in their
inability to be properly separated (Fig. 8 (b)). Integrating semantic segmentation or similar techniques
to model the skeleton and skinning weights represents a promising direction for future research.

3. Details of Skeleton Construction
We provide a detailed description of the skeleton construction process. Alg. 1 demonstrates the overall
process.
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Figure 6. Visual comparisons of our method, without MLP for skinning weights or pose-dependent detail defor-
mation, with annotated PSNR values.

k = 1 k = 5 k = 10

Figure 7. The input image (left) and the visualized skeleton and skinning weights (right).

Prune or Merge for Dense Skeleton Construction. After constructing the minimum spanning tree,
due to the presence of noise, we need to remove redundant branches and merge closely located joints.
Specifically, if an endpoint passes through fewer than r connected points on its way to the nearest
junction, we consider it as an unnecessary point and remove this endpoint along with these connection
points. In addition, we will merge two junctions if the number of connection points between them is
less than r, and remove these connected points if they exist. Since the distribution of these nodes is
uniform, such operations generally do not remove important feature points with long neighboring edges.
By default, we set r = 3.



(a) (b)

Figure 8. Two frames of rendered images (left), skeleton and skinning weights (right) from (a) “386” on the ZJU-
MoCap dataset, and (b) “Standup” on the D-NeRF dataset.

Construction of J for Skeleton Simplification. The following steps are performed to obtain the joint
set J of the sparse skeleton:

Step 1: Initialize J and define initial paths. We regard all junctions and endpoints as key points of Jd

and add them into J . For any two connected key points (Ja,Jb), i.e. when moving from Ja to Jb, there
are no other key points, we define a path Pab = {Ja,p

ab
1 , ...,pab

m ,Jb} (Fig. 9 (a)) where pab
i ∈ Jd are the

passing points from Ja to Jb.

Step 2: Select a candidate joint from each path. From these passing points {pab
i }, we select a point that

is more likely based on geometric position and motion information as the candidate points of J . We
assume that geometric turning points are more likely to be joint points. So we first connect Ja and Jb

with a straight line segment lab and calculate the distance D(pab
i , lab) from pab

i to lab. See Fig. 9 (b), the
point with the maximum distance is more likely to be a geometric turning point. However, due to noise
in Jd, directly selecting points based on this distance may lead to selecting points very close to Ja or Jb

(such as red points in Fig. 9 (c)), which are undesirable joints. Therefore, we define the following score

sab
i = D(pab

i , lab)− 0.1min(D(pab
i ,Ja), D(pab

i ,Jb)), (1)

where D(pab
i ,Ja) and D(pab

i ,Jb) are the distance between pab
i with Ja and Jb, separately.
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End points of the path Maximal score point

Candidate joint points

Noise points

PathGuidelines Estimated edges

Figure 9. Selection of candidate joints.

To consider motion information, at each time t, we transform pab
i ,Ja, and Jb to the position of the

pab
i

t
,Jt

a, and Jt
b according to the initial deformation field in Sec. 3.1 and compute sab

i
t according to

Eq. (1). The point pab
∗ with the maximal

∑
t s

ab
i

t is selected as the candidate joint.



Algorithm 1: Construction of skeleton.
Input: Skeleton candidate nodes {ct∗} and the corresponding semantic labels;
Result: Skeleton including joints J = {Jj} and parent indices {JA(j)}.

1 // Construct dense skeleton.
2 Perform farthest point sampling to obtain uniformly distributed control points {ct∗s }s∈S ;
3 Construct the edge set E for {ct∗s } using Prim’s algorithm;
4 Prune redundant endpoints and merge close junctions;
5 // Skeleton simplification.
6 J = ∅;
7 Add all junctions and ends to J ;
8 Establish paths {P} between two connected nodes in J ;
9 for ∀(Ja, Jb) ∈ J do

10 Compute the candidate joints set hab according to Alg. 2;
11 end for
12 // Symmetry enhancement based on semantic labels.
13 for ∀(Pab,Pef ) do
14 if ||Pab| − |Pef || < ϵ1 ·max(|Pab|, |Pef |) and |sem(Pab) ∩ sem(Pef )| >

ϵ2 · |sem(Pab) ∪ sem(Pef )| then
15 Select a path with more moderate number of candidate joints;
16 Reselect the candidate joints for other path according to the selected path;
17 end if
18 Add these candidate joints into J ;
19 end for

Step 3: Add paths and continue to select candidate points. The new candidate point pab
∗ and endpoints

Ja and Jb form two new paths. Repeat the step 2 to find new candidate points. Fig. 9 shows this process.

Step 4: Enhance the symmetry of candidate joints using precomputed DINO features [1]. Considering
that many objects exhibit symmetry, we further utilize semantic information to enhance the symmetry
of candidate joints selected by step 2-3. For two paths Pab and Pef in step 1, we consider they are
symmetric if their lengths and semantic labels are similar. By projecting Jt

a,J
t
b and pab

i
t onto the image

according to the camera perspective, we can obtain semantic classification based on image segmentation
using DINO features. We set the semantic label of Ja,Jb and pab

i as the median of these labels at all
times to represent the semantic category of the majority of frames. Since these semantic labels are also
not precise, we count the number of different kinds sem(Pab) and sem(Pef ) of semantics that appear
on Pab and Pef respectively. If |sem(Pab) ∩ sem(Pef )| > ϵ2 · |sem(Pab) ∪ sem(Pef )|, then we consider
them to be similar in semantics.

If Pab and Pef are similar in length and semantics, then we will perform symmetrical correction on
them so that the number and distribution of joints along the two paths are similar. We tend to choose
the path with a moderate number of candidate points as templates (closer to ϵ3) and adjust the other
path to be similar. Without loss of generality, let’s assume Pab is the template. we will discard the
candidate joints in Pef and reselect points from Pef = {Je,pd1 , ...,pdnab

,Jf}, where pdi is selected by



Algorithm 2: Selection of candidate joints on a path.
Input: Pab = [Ja,p1, ...,pm,Jb], current candidate joints set hab;
Result: Updated candidate joints set hab.

1 Set the candidate joints set hab = ∅ for Pab;
2 Compute sab

i
t according to Eq. (1);

3 pab
∗ = argmaxpi

∑
t s

ab
i

t
/|I|;

4 if
∑

tDt(p
ab
∗ , lab)/|I| < l then

5 return hab;
6 else
7 hab = hab + {pab

∗ };
8 Perform Alg. 2 with [Ja,p1, ...,p

ab
∗ ] and hab as input;

9 Perform Alg. 2 with [pab
∗ , ...,Jb] and hab as input;

10 return hab;
11 end if

len([Je,pdi
])

len([Je,Jf ])
≈ len([Ja,pab

i ])

len([Ja,Jb])
. Here len(x, y) denotes the length of the path between x and y. Based on our

experience, setting ϵ1 = 30%, ϵ2 = 60%, ϵ3 = 3 is a robust choice. After processing each path pair, we
obtain the final sparse joint set J .

4. Implementation Details
During the training process, we first trained the initialization stage for 80,000 iterations, optimizing 3D
Gaussians G, the positions of skeleton-aware nodes and the parameters of MLP FΘ for the corresponding
time-related rotations and translations. Then we obtained the initialized deformation field and candidate
nodes of skeleton significance. We set the weight wproj = 10−3, and dynamically decreased warap from
10−4 to 0 during iterations. After completing the initialization training, we obtained a new canonical
shape and constructed the skeleton. The new canonical shape will serve as the initial 3D Gaussian rep-
resentation for the skeleton-driven dynamic model. We obtained the initial values of skeleton-driven de-
formation by pointwise supervision with the skeleton-aware node-controlled deformation field. Finally,
we performed the training process for 100,000 iterations, optimizing 3D Gaussians G, the parameters of
MLP FΦ for time-related skeleton poses and translations, scaling factors {ηi,j}Jj=2 and the parameters of
FΨ for learnable skinning weights, as well as the parameters of FΠ for pose-dependent detail deforma-
tion. At this stage, the positions of joints and parent indices of the skeleton are fixed, as treating them
as variables can lead to instability. During the inference stage, we solely executed the skeleton-driven
deformation model.
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