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1. Overview
In this supplementary material, we provide more details of
PPL, organized as follows:
In Section 2, we present the details of our role-based ap-
proach to constructing the large-scale skill dataset, corre-
sponding to Section 5.1 of the main body.
In Section 3, we present some ablation studies, including
semantically-rich language instruction experiments.
In Section 4, we provide experimental details including
Hyper-parameter setting for all methods employed in our
experiments, supplementing Section 5 of the main body.

2. Skill Dataset Details
2.1. Construction of skill dataset
To facilitate knowledge reuse and transfer across skills, we
adopt a role-based approach for decomposing simulation
datasets like MimicGen [3] and LIBERO [2], transition-
ing from task-level to skill-level demonstrations. As men-
tioned in MimicGen, each MimicGen task comprises a se-
quence of object-centric subtasks [3] — we aim to parse
every task in the source dataset into skills, where each task
corresponds to a set of skills. Specifically, in universal robot
simulation environment, we can easily access contact infor-
mation between objects and environment, inter-object inter-
actions, and also object-gripper interactions, which enables
us to establish success metrics for each subtask. By run-
ning through the demonstration sets in the simulation envi-
ronment, we could identify the ending timesteps and com-
pletion boundaries for each subtask, enabling us to decom-
pose task-level demonstrations into skill-level demonstra-
tions. When deployed in real-world settings, this can be
implemented by sensor signals or manual annotations.

2.2. Specific Examples
In this section, we will introduce multiple skills contained
in each task and explain the success metric for each skill.
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• Stack: (1) grasp the red cube; (2) place the red cube.
The grasp skill is identified by detecting contact between
gripper and cube. The place skill is determined when two
conditions are met: the gripper releases contact with the
cube and contact is established between the two cubes.

• StackThree: (1) grasp the red cube; (2) place the red
cube; (3) grasp the blue cube; (4) place the blue cube.
Similar to Stack, the grasp skill is identified by the con-
tact detecting. The place skill is determined when two
conditions are met: the gripper releases contact with the
cube and contact is established between the two cubes.

• Square: (1) grasp the square; (2) place the square. Sim-
ilar to Stack, the grasp skill is identified by the contact
detecting. The place skill is determined when two condi-
tions are met: the gripper releases contact with the square
and contact is established between the two squares.

• Coffee: (1) grasp the coffee mug; (2) place the coffee
mug; (3) close the machine lid. The grasp skill is iden-
tified by the contact detecting. The place skill is deter-
mined when two conditions are met: the gripper releases
contact with the coffee mug and contact is established be-
tween the coffee mug and the coffee machine. The close
skill is detected through the angle of the machine lid.

• Mug Cleanup: (1) open the drawer; (2) grasp the mug;
(3) place the mug. The open skill is determined by moni-
toring the drawer’s displacement. The grasp skill is iden-
tified by gripper-object contact. The place skill is deter-
mined by both gripper-object and object-object contact.

• Three Piece Assembly: (1) grasp the piece 1; (2) place
the piece 1; (3) grasp the piece 2; (4) place the piece 2.
The open skill is determined by monitoring the drawer’s
displacement. The grasp skill is identified by the gripper-
object contact detecting. The place skill is determined by
both gripper-object and object-object contact.

• Coffee Preparation: (1) grasp the mug; (2) open the
machine lid; (3) open the drawer; (4) grasp the coffee
mug; (5) place the coffee mug; (6) close the machine lid.
The grasp skill is identified by the gripper-object contact.
The place skill is determined by both gripper-object and
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object-object contact. The open skill is determined by
monitoring the drawer’s displacement. The close skill is
detected through the angle of the machine lid.

3. Ablation Studies
3.1. Effect of Motion-Aware Prompt Query
In this section, to further demonstrate the effectiveness of
our motion-aware prompting (MAP) module, we construct
language instructions with different densities (semantically-
rich/brief), and analyze the impacts on manipulation tasks
using these text-only queries and our flow-text querie.
Specifically, since language instruction cannot effectively
provide the motion information needed by robots, we in-
troduce optical flow in this paper to capture motion-aware
information, thereby enabling the modeling of primitives.

Task Query Type Succ. Rate

Task 1

Brief 0.61 ± 0.03
Semantically-rich 0.60 ± 0.04

Brief w/ Flow (ours) 0.99 ± 0.03

Task 2

Brief 0.57 ± 0.08
Semantically-rich 0.53 ± 0.04

Brief w/ Flow (ours) 0.62 ± 0.02

Table 1. Effect of query type and instruction density.

Task Query Type Instruction

Task 1
Brief

Grasp banana
Place banana

Semantically-rich
Reach close to banana, and then grasp banana

Keep banana grasped, reach close to the other side and then place banana

Task 2
Brief

Grasp block
Place block

Semantically-rich
Reach close to block, and then grasp block8i

Keep block grasped, reach close to the other side and then place block

Table 2. Examples of Instructions with Different Densities.

As shown in Tab. 1 and 2, we design semantically-rich
and brief language instructions across four skills and com-
pare the manipulation performance under different query
types. The experimental results demonstrate that although
semantically-rich instructions provide more dense and com-
prehensive narrative information, they show no significant
performance improvement compared to brief and effective
instructions in practical experiments. This may be attributed
to the fact that language embeddings merely serve to dif-
ferentiate between different tasks. This phenomenon was
also observed in LIBERO [2], which further discovered that
there is no statistically significant difference among various
language embeddings, including the task-ID embedding.
Furthermore, the performance of using either semantically-
rich or brief language as the prompting query consistently
underperforms compared to our text-flow query, validating
the effectiveness and advantages of our MAP approach.

4. Implementing Details
We employ ResNet [1] as our visual encoder, CLIP [4] as
the text encoder, and RAFT [5] as flow encoder. During

training, we use the Adam optimizer with an initial learn-
ing rate of 0.0005 and a decay factor of 0.2. In the multi-
skill pre-training stage, we train for a total of 450 epochs in
simulation and 80 epochs on the real robot. In the lifelong
learning stage, we train for a total of 50 epochs in simula-
tion and 20 epochs on the real robot.
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Grasp the red cube. Place the red cube.

Grasp the square. Place the square.

Grasp the coffee mug. Place the coffee mug. Close the machine lid.

Open the drawer. Grasp the mug. Place the mug.

Grasp the piece 1. Place the  piece 1. Grasp the piece 2. Place the piece 2.

Stack

Grasp the blue cube. Place the blue cube.Grasp the red cube. Place the red cube.

Stack Three

Square

Coffee

Mug Cleanup

Three Piece Assembly

Grasp the mug. Place the mug. Open the machine lid.

Open the drawer. Grasp the coffee mug. Place the coffee mug. Close the machine lid.
Coffee Preparation

Figure 1. Example skills in our dataset corresponding to original MimicGen tasks.
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