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A. Additional Qualitative Results
We provide extensive qualitative results of Uni4D and
other baselines on all datasets in the attached webpage
(accessed by index.html). We ran MonST3R using
their provided hyperparameters from their respective offi-
cial codebase on all datasets. In our qualitative comparison,
we use the estimated dynamic masks from MonST3R. This
ensures a fair comparison, as the qualitative results for ALL
competing algorithms, including ours and all the baselines,
do not use privileged information. We generate dynamic
masks from CasualSAM by thresholding its uncertainty
prediction, using their estimated video depth maps and
camera pose to output 4D reconstruction. For Uni4D,
we use the same set of hyperparameters throughout our
pipeline for all videos for each respective dataset.

All reconstructions are performed with depth estimates
resized back to original input resolutions, and with back-
ground point clouds downsampled 5 times for efficiency us-
ing uniform downsampling. We render final (point-cloud)
reconstructions using Open3D, manually picking similar
viewpoints for all methods since the reconstructions are
neither axis nor scale aligned. We provide visualizations
for DAVIS [8], Sintel [2], TUM-dynamics [11], Bonn [7],
and KITTI [3], including failure cases. We include sam-
pled frames of our visualizations in Fig. 5, 6, 7, though we
strongly encourage viewing the attached webpage for the
best visualization experience of our results.

B. Quantitative Evaluation Procedures
For all quantitative evaluation results of pose and video
depth maps, we follow MonST3R’s evaluation script. We
ran all of our baselines using their official codebase and
default hyperparameters on all datasets. We use the same
depth map alignment, based on least squares in disparity
space, for all our depth map evaluations. This is slightly
different from the evaluation in MonST3R, where after con-
firming with MonST3R author, different alignment meth-
ods were used for different baselines. This accounts for the
different quantitative results in our study and MonST3R’s
for overlapping baselines (Particularly, we found that Casu-
alSAM [13] and DepthCrafter [5] achieves better reported
performance than in the MonST3R paper (see Table 2 in
main paper)).

C. Runtime Breakdown
Figure 1 presents a detailed runtime breakdown of Uni4D’s
preprocessing and optimization stages. Runtimes are aver-

Figure 1. Runtime Breakdown of preprocessing and optimiza-
tion

aged across videos of the same length from our evaluation
datasets. The reliance on foundation models significantly
contributes to the preprocessing time, particularly due to
Unidepth [10] and CotrackerV3 [6]. Stage 1 initialization,
which estimates poses from scratch, accounts for the ma-
jority of the optimization runtime. Overall, runtime scales
linearly. Further improvements through advanced optimiz-
ers and parallelization are left for future work.

D. Densification Details
During fusion, we wish to densify the sparse depth obtained
from our point trajectories to obtain full-resolution depth
maps. Naively interpolating our projected depth in image
space leads to poor results, especially across edges and
boundaries. Fortunately, flickers in predicted depth maps
are usually constant across each scene element. Using this
observation, we perform a scale interpolation derived in 3D
to obtain a scaling correction s(x) for pixel coordinates x
for every pixel in the depth maps using the following inter-
polation formula:

s(x) =
∑

pi∈n(x)

wi
z(pi, ξt)

Dt(πK(pi, ξt))
(1)

where n(x) are the 3 nearest point trajectories in 3D of
the unprojection of x, π−1

K (x, ξt). wi is simply 1
di

where
di is the euclidean distance between unprojection of x and
each corresponding pi. z(pi, ξt) returns the z-component
of pi after transforming to camera coordinates at time t,
and Dt() returns the depth value from our estimated video
depth at the given pixel coordinate at time t. We get our
final depth value at pixel x through s(x) ·Dt(x). Note that
our interpolation is tracklet-aware and searches for nearest
neighbors within our preprocessed dynamic object masks.
Intuitively, this performs depth map alignment by aligning
the original temporally inconsistent depth predictions with
our point trajectories to achieve consistent and stable video



Sintel

Method ATE ↓ RPE trans ↓ RPE rot ↓

Uni4D (Metric3D [4]) 0.135 0.033 0.347
Uni4D (Depth-Pro [1]) 0.143 0.032 0.451
Uni4D (Depthanythingv2-outdoor [12]) 0.112 0.040 0.556
Uni4D (Unidepth) 0.109 0.032 0.347

Table 1. Performance with different depth models. We evaluate
pose estimation performance on Sintel using different metric depth
estimation models.

depth.

E. Depth Model Ablation Study
A key strength of Uni4D is that its modular pipeline allows
for the interchangeability of its underlying pre-trained com-
ponents. We try different depth estimation models and eval-
uate their pose and depth estimation results on the Sintel [2]
dataset in Tab. 1. We find that currently, Unidepth [9] pro-
vides the best results.

F. Ablation on tracker and segmentation
choice

Method ATE↓ RPE-t↓ RPE-r↓ AbsRel↓ δ1.25 ↑

Uni4D (TAPIR) 0.131 0.048 1.483 0.224 71.7
Uni4D (BootsTAPIR) 0.135 0.027 0.403 0.219 72.5
Uni4D (CTv2) 0.111 0.032 0.309 0.214 72.7
Uni4D (original, CTv3) 0.110 0.031 0.338 0.216 72.5

Uni4D (Mask-RCNN) 0.107 0.028 0.498 0.269 68.2
Uni4D (original, DEVA) 0.110 0.031 0.338 0.216 72.5

Table 2. Ablation on different trackers and segmentators We
compare both pose and geometry performance on Sintel using dif-
ferent tracklet and segmentation models.

We compare different trackers and segmentors in Tab.
2. TAPIR and BootsTAPIR lead to worse camera pose and
depth. CTv2 (CotrackerV2) performs similarly to CTv3
(CotrackerV3), though we found CTv3 to have better dy-
namic correspondences qualitatively. Mask-RCNN tends to
have false positives, leading to over filtering of static track-
lets. Due to our dense tracklet initialization, this does not
necessarily harm pose estimation. However, it harms depth
estimation due to our tracklet-aware densification.

G. Dynamic Regularization Ablation Study
We ablate our different energy terms for dynamic objects
in Tab. 3, demonstrating depth map improvements in dy-
namic regions with each additional dynamic energy term.
Note that dynamic segmentations are particularly difficult
on Sintel dataset due to large camera motions and close-
ups of dynamic elements. Despite the challenging set-
ting, our method produces better dynamic depth maps under
the δ<1.25 metric with estimated dynamic segmentations.

Sintel

Method Abs Rel ↓ δ<1.25 ↑

Unidepth [9] 0.178 78.4
Uni4D (no dynamic opt.) 0.253 75.1
Uni4D ( +Esmooth) 0.228 77.0
Uni4D ( +Esmooth +Earap) 0.226 77.1
Uni4D (+Esmooth +Earap +ENR) 0.220 78.8
Uni4D with gt seg (+Esmooth +Earap +ENR) 0.169 79.4

Table 3. Ablation on Emotion (Earap, Esmooth) and ENR. We
ablate on our different dynamic element energy terms Emotion and
ENR through depth map accuracy on Sintel (only considering dy-
namic elements as defined by ground truth dynamic masks).

With ground truth dynamic masks, our dynamic regulariza-
tion improves on depth map estimation in dynamic regions
over Unidepth [9].

H. Qualitative Results on Camera Pose Evalu-
ation

For a thorough breakdown and visualization of our cam-
era pose evaluations, we plot our Average Translation Er-
ror (ATE) results on all camera pose datasets in Fig. 2 3 4.
Despite the highly dynamic nature of the Sintel dataset [2],
Uni4D provides accurate estimations for most videos thanks
to accurate dynamic segmentation, with failure cases in
Cave 2 and Temple 3 as seen in Fig.2. Both videos have
large dynamic objects that make them challenging among
other baselines as well. For real-world datasets TUM-
Dynamics [11] and Bonn [7], Uni4D consistently produces
the best camera pose estimates with minimal failure cases.
Note that across the diverse settings in TUM-Dynamics, in-
cluding purely translational, rotational, and static camera
motion, Uni4D nearly always provides the best pose esti-
mates as seen in (Fig. 3). Our camera smoothness regular-
ization also results in the smoothest trajectories, as shown
in Fig. 4.

I. Failure Cases
We provide full visualization of failure cases in our web-
page, and sampled frames in Fig. 8. Failure cases include
erroneous dynamic masks, depth map estimations, and lo-
calization. These errors stem from the underlying mod-
els used for segmentation, depth map estimation, and pixel
tracking respectively. As the various models are improved
upon in the future, we can expect the performance of Uni4D
to improve as well.



Figure 2. Qualitative Pose Results on Sintel Uni4D provides accurate pose estimate on Sintel which contains highly dynamic elements
which takes up much of the frame, with 2 failure cases in cave 2 and temple 3. Cave 2 full visualization can be seen from our webpage
under ”failure cases”. Other pose estimates are competitive and even outperform baselines in certain scenes.



Figure 3. Qualitative Pose Results on TUM-Dynamics Uni4D performs well in real-world datasets due to its leverage of big models.
Across varied settings where camera motion is mainly rotations (rpy videos), static (static videos), and contains highly dynamic elements
(walking videos), Uni4D surpasses other baselines in estimating accurate camera pose.



Figure 4. Qualitative Pose Results on Bonn Uni4D performs well in real-world datasets, with minimal trajectory errors across all videos
in Bonn dataset, successfully estimating trajectories in difficult videos such as ’kidnapping box’ and ’placing non-obstructing box’ where
other baselines face difficulties in.
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Figure 5. Qualitative Results on DAVIS dataset We show qualitatively some of our reconstruction results on the DAVIS dataset compared
with other baselines. We visualize here two temporally separate frames and their reconstructions. For full reconstruction, please refer to
our attached supplementary webpage.
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Figure 6. Qualitative Results on Sintel and TUM-Dynamics dataset We show qualitatively some of our reconstruction results on Sintel
and TUM-Dynamics dataset compared with other baselines. We visualize here 2 temporally separate frames and their reconstructions. For
full reconstruction, please refer to our attached supplementary webpage.
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Figure 7. Qualitative Results on Bonn and KITTI datasetWe show qualitatively some of our reconstruction results on Bonn and KITTI
dataset compared with other baselines. We visualize here 2 temporally separate frames and their reconstructions. For full reconstruction,
please refer to our attached supplementary webpage.
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Figure 8. Failure Cases We visualize several failure cases of Uni4D on various datasets. We visualize here 2 temporally separate frames
and their reconstructions. For full reconstruction, please refer to our attached supplementary webpage.
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Marcel Santos, Yichao Zhou, Stephan R Richter, and
Vladlen Koltun. Depth pro: Sharp monocular metric depth in
less than a second. arXiv preprint arXiv:2410.02073, 2024.
2

[2] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and
Michael J Black. A naturalistic open source movie for opti-
cal flow evaluation. In Computer Vision–ECCV 2012: 12th
European Conference on Computer Vision, Florence, Italy,
October 7-13, 2012, Proceedings, Part VI 12, pages 611–
625. Springer, 2012. 1, 2

[3] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231–1237,
2013. 1

[4] Mu Hu, Wei Yin, Chi Zhang, Zhipeng Cai, Xiaoxiao Long,
Hao Chen, Kaixuan Wang, Gang Yu, Chunhua Shen, and
Shaojie Shen. Metric3d v2: A versatile monocular geomet-
ric foundation model for zero-shot metric depth and surface
normal estimation. arXiv preprint arXiv:2404.15506, 2024.
2

[5] Wenbo Hu, Xiangjun Gao, Xiaoyu Li, Sijie Zhao, Xiaodong
Cun, Yong Zhang, Long Quan, and Ying Shan. Depthcrafter:
Generating consistent long depth sequences for open-world
videos. arXiv preprint arXiv:2409.02095, 2024. 1

[6] Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia
Neverova, Andrea Vedaldi, and Christian Rupprecht. Co-
tracker3: Simpler and better point tracking by pseudo-
labelling real videos. arXiv preprint arXiv:2410.11831,
2024. 1

[7] Emanuele Palazzolo, Jens Behley, Philipp Lottes, Philippe
Giguere, and Cyrill Stachniss. Refusion: 3d reconstruction
in dynamic environments for rgb-d cameras exploiting resid-
uals. In 2019 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 7855–7862. IEEE,
2019. 1, 2

[8] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc
Van Gool, Markus Gross, and Alexander Sorkine-Hornung.
A benchmark dataset and evaluation methodology for video
object segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 724–732,
2016. 1

[9] Luigi Piccinelli, Yung-Hsu Yang, Christos Sakaridis, Mattia
Segu, Siyuan Li, Luc Van Gool, and Fisher Yu. Unidepth:
Universal monocular metric depth estimation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10106–10116, 2024. 2

[10] Luigi Piccinelli, Christos Sakaridis, Yung-Hsu Yang, Mat-
tia Segu, Siyuan Li, Wim Abbeloos, and Luc Van Gool.
Unidepthv2: Universal monocular metric depth estimation
made simpler. arXiv preprint arXiv:2502.20110, 2025. 1

[11] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram
Burgard, and Daniel Cremers. A benchmark for the evalua-
tion of rgb-d slam systems. In 2012 IEEE/RSJ international
conference on intelligent robots and systems, pages 573–580.
IEEE, 2012. 1, 2

[12] Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiao-
gang Xu, Jiashi Feng, and Hengshuang Zhao. Depth any-
thing v2. arXiv preprint arXiv:2406.09414, 2024. 2

[13] Zhoutong Zhang, Forrester Cole, Zhengqi Li, Michael Ru-
binstein, Noah Snavely, and William T Freeman. Structure
and motion from casual videos. In European Conference on
Computer Vision, pages 20–37. Springer, 2022. 1


	Additional Qualitative Results
	Quantitative Evaluation Procedures
	Runtime Breakdown
	Densification Details
	Depth Model Ablation Study
	Ablation on tracker and segmentation choice
	Dynamic Regularization Ablation Study
	Qualitative Results on Camera Pose Evaluation
	Failure Cases

