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6. Model Architecture

We follow Latent Diffusion Models (LDMs) [24] to build
a conditional diffusion model as our BEVDiffuser by aug-
menting the U-Net with cross-attention layers. The cross-
attention operation is defined in Equation 10, where W→
represents learnable projection matrices unless otherwise
specified, ωi(xt) denotes the intermediate embedding of xt

from the i-th layer of the U-Net, and εω(y) indicates the
embedding of the condition y.

cross-attn(Q,K, V ) = softmax(
QKT

→
d

) · V

Q = ωi(xt)W
i
Q, K = εω(y)W

i
K , V = εω(y)W

i
V

(10)

To better fuse the BEV feature map xt and the layout
condition y = l and have more control over all the objects
specified in the layout, we adopt the global conditioning and
the object-aware local conditioning mechanism proposed
by [39]. Specifically, we first use a transformer-based layout
fusion module LFM as εω to get a self-attended embedding
o↑i for each object oi as shown in Equation 11. In this way,
o↑0 contains the information of the entire layout and is then
added to xt for global conditioning, i.e., x↑

t = xt + o↑0Wo.
Meanwhile, the embedding of all the objects l↑ = {o↑i}ni=0

is used to construct the key Kl and the value Vl of the lay-
out for object-aware local conditioning. We adopt convo-
lutional operations for the construction as shown by Equa-
tion 12. Similarly, we construct the query, key and value of
the BEV feature as Equation 13 shows. To align the BEV
feature with the layout, we divide the BEV feature map xt

equally into k ↑ k bounding boxes, denoted by {bx}k↓k
1 .

We encode the bounding boxes from both BEV feature and
layout, i.e., bx and bl, into the same embedding space us-
ing the shared weights Wb and Wp, and get the positional
embedding Px and Pl for the BEV feature and the layout,
respectively (see Equation 14). Px and Pl are utilized to
generate the fused query, key and value by combining the
BEV feature and the layout for the cross-attention opera-
tion, as formulated in Equation 15. [ · ] represents the con-
catenation operation.

l↑ = {o↑i}ni=0 = LFM({oi}ni=0)

= self -attn({ciWc + biWb}ni=0)
(11)

Kl, Vl = convwl(l
↑) (12)

Qx, Kx, Vx = convwx(ωi(x
↑
t)) (13)

(a) Existing layout. (b) Objects removed.

(c) Objects added. (d) Objects repositioned.

Figure 7. BEV feature maps generated by our BEVDiffuser
(BDfu) from pure noise, conditioned on user-defined layouts. We
modify an existing layout (a) from nuScenes mini-val dataset
by randomly removing (b), adding (c), and repositioning (d) some
objects, as highlighted by the red boxes. BEVDiffuser generates
accurate BEV feature maps, enabling the detection head to pro-
duce predictions that closely align with the ground truth.

Px = bxWbWp, Pl = blWbWp (14)

Q =

[
Qx

Px

]
, K =

[
Kx Kl

Px Pl

]
, V =

[
Vx Vl

]
(15)

7. Implementation Details

Our implementation is built upon the official BEVFormer
implementation 1 and the MMCV implementation of the
BEVFusion 2. The hyperparameter ϑ and ϑBEV are em-
pirically tuned based on the scale of the loss. Specifically,

1https://github.com/fundamentalvision/BEVFormer
2https://github.com/open-mmlab/mmdetection3d/

tree/main/projects/BEVFusion

https://github.com/fundamentalvision/BEVFormer
https://github.com/open-mmlab/mmdetection3d/tree/main/projects/BEVFusion
https://github.com/open-mmlab/mmdetection3d/tree/main/projects/BEVFusion


Figure 8. Visualization results of our BEVDiffuser enhanced BEVFormer-tiny on nuScenes val dataset. As shown in CAM FRONT and
CAM FRONT RIGHT, BEVDiffuser helps BEVFormer-tiny to detect the car intending to cross the road under the challenging lighting
condition. Moreover, BEVDiffuser also helps to reduce hallucinations generated by BEVFormer-tiny, especially on CAM FRONT LEFT.

we configure ϑ and ϑBEV as follows: for BEVFormer-tiny
and BEVFormer-base, ϑ = 0.1 and ϑBEV = 100; for BEV-
FormerV2, ϑ = 0.05 and ϑBEV = 100; and for BEVFu-
sion, ϑ = 0.2 and ϑBEV = 20.

8. Ablation Study

We conduct an ablation study on BEVDiffuser (BDtiny) to
validate our design choices of layout conditioning and op-
timization objective, i.e. optimizing towards xt0 with the
task loss. Note that to optimize towards ϖ̂t, we are not able
to attach the task head or use the task loss. As shown in
Tab. 5, without the task loss, whether we optimize towards
xt0 or ϖ̂t, the denoising capability we obtained is quite lim-
ited, demonstrating that the task loss is critical to guarantee
the denoising performance. Similarly, our layout condition-

ing also contributes to the superior denoising capability of
BEVDiffuser, as evidenced by the inferior performance of
the unconditional model.

# denoising steps
Method obj. 1 3 5 10
Ours xt0 35.8/47.7 40.4/52.3 40.8/52.7 40.3/52.3

→task xt0 24.5/34.7 23.1/32.8 21.7/31.0 17.4/26.1
ω̂t 25.2/35.5 25.2/35.5 25.2/35.5 25.2/35.5

→cond. xt0 25.4/35.4 25.3/35.3 25.1/35.0 24.7/34.6

Table 5. Ablation study. mAP/NDS achieved by the variants of
BEVDiffuser (BDtiny) with increasing denoising steps (1↑10).
Results validate that both the task loss and the layout conditioning
contribute to the superior denoising capability of BEVDiffuser.



Figure 9. Visualization results of our BEVDiffuser enhanced BEVFormer-base on nuScenes val dataset. While BEVFormer-base shows
good performance in the crowded environment, BEVDiffuser enhances its performance further, such as by detecting a human riding a
bicycle in front of the autonomous vehicle, as indicated by the red bounding box in CAM FRONT and CAM FRONT LEFT.

9. Additional Qualitative Results

9.1. Controllable BEV Generation

We present user-defined layout-conditioned BEV genera-
tion in Fig. 7. We modify an existing layout by randomly
removing, adding, or repositioning some objects, and then
condition the BEVDiffuser on the modified layouts to gen-
erate BEV feature maps. As shown in Fig. 7, BEVDiffuser
is able to produce BEV feature maps that enable accurate
object detection in alignment with the specified layouts,
demonstrating its strong controllable generation capability.
This capability facilitates easy adjustments to object pres-
ence and positioning in the BEV feature space, paving the
way for large-scale data collection and driving world model
development to advance autonomous driving.

9.2. 3D Object Detection

We visualize the 3D object detection results achieved by
our BEVDiffuser enhanced BEVFormer-tiny, BEVFormer-
base, BEVFormerV2 and BEVFusion in Fig. 8, Fig. 9,
Fig. 10 and Fig. 11, respectively. We present the ground-
truth and predicted 3D bounding boxes in both multi-
camera images and the LiDAR top view to offer a com-
prehensive overview of the models’ performance. As illus-
trated in the figures, BEVDiffuser consistently enhances the
existing BEV models for object detection in complex envi-
ronments and under challenging conditions by minimizing
both false positives and false negatives, demonstrating its
ability to improve the quality of the BEV representations.



Figure 10. Visualization results of our BEVDiffuser enhanced BEVFormerV2 on nuScenes val dataset. In this representative example,
despite the rain causing blurriness in the camera images, BEVDiffuser still enables BEVFormerV2 to reliably detect the object in front of
the autonomous vehicle, as captured by the LiDAR top view.



Figure 11. Visualization results of our BEVDiffuser enhanced BEVFusion on nuScenes val dataset. BEVFusion, which integrates both
camera and LiDAR data, delivers robust performance in low-light conditions at night. BEVDiffuser further enhances BEVFusion by
effectively reducing false negatives, as demonstrated in the LiDAR top view.
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