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Supplementary Material

In Sec. A, we elaborate on the implementation details of
our proposed method and the experimental setups. We pro-
vide additional results and extended discussions in Sec. B.

A. Implementation Details

A.1. Model Architecture
In the implementation of our pose encoder network Ed, the
PointNet++ [10] abstracts the point features for L = 4
levels, and the numbers of the abstracted points are 2048,
512, 128, and 32 at each level, respectively. Both the lo-
cal and global pose codes share a feature dimensionality of
Mp = 256, whereas the garment code is represented by a
Mg = 64-dimensional learnable parameter.

The structure-aware pose encoder Eg for extracting pose
feature embedding for the free-form generation module pos-
sesses a similar architecture with Ed. Given our focus on
modeling skirts and long dresses, we selectively sample
posed points from Kb = 4 local parts situated on the legs,
including the left upper leg, left lower leg, right upper leg,
and right lower leg. Although the short skirt doesn’t directly
cover the lower legs, their pose still indirectly affects the
skirt’s movement. Specifically, we uniformly sample 2048
points from each part, which are then inputted into Eg to de-
rive part-aware local features. A final global max-pooling
layer is prepended to extract the global pose features.

As for the free-form generator G, We modify a sim-
ple yet effective style-based point generator, SpareNet [13].
SpareNet employs point morphing techniques to map a unit
square [0, 1]2 onto a 3D surface. Specifically, we utilize
K surface elements (8 in our experiments) to construct the
loose garment. For simplicity, we omit the refiner mod-
ule and adversarial rendering. Empirically, we observe that
refinement following the hybrid modeling of the garment
doesn’t yield performance improvements. The number of
generated points, denoted as Ng , is manually configured to
either 32768 for long dresses or 16384 for skirts.

A.2. Garment-specific Clothing-cut Map
Here we provide comprehensive details on computing the
garment-specific clothing-cut maps, as outlined in the main
paper. Following the methodology in POP [7], all base-
line approaches [5, 8, 14] uniformly sample point sets from
the UV map at a resolution of 256 × 256. Specifically,
Nd = 47911 points are sampled. We start by segmenting
the unclothed regions, including the head, hands, and feet,
which contain up to Nu = 13240 points.

Then we apply the off-the-shelf image segmentation
model, SAM [4], to automatically identify the loose region.
Specifically, we select the frame that closely resembles the
canonical pose in the training sequence and render the front
and back view normal maps to cover all body points. These
normal maps are fed into SAM to locate loose clothing in-
cluding skirts and dresses. The segmented results are shown
in Fig. A1. We back-project the detected pixel coordinates
into 3D space and employ nearest neighbor search to assign
each point on the UV map to the full scan, filtering the cor-
responding loose parts on the body surface. The extracted
clothing-cut maps for all 5 subjects from the ReSynth [7]
dataset are visualized in Fig. A2.

To ensure fair comparisons, we merge points from three
sources, i.e. combining Nu, Nd, and Ng points, and employ
farthest point sampling (FPS) to obtain the final full point
set with N = 47911 points to match the baselines [7, 8].

A.3. Training
We train our network for 1000 epochs on the ReSynth [7]
dataset, using the Adam [3] optimizer with a batch size of 8
and a learning rate of 3.0 × 10−4. The loss weights are set
to λp = 1 × 104, λn = 1.0, λrd = 2 × 103, λrg = 1 and
λcol = 2 × 10−2 to balance loss terms. Following previ-
ous works [7, 14], we only activate the normal loss from the
400th epoch. The training procedure takes about 20 hours
on a single RTX 3090 GPU. Given limited 3D training data,
we enhance the robustness of our free-form generator to
out-of-distribution poses by balancing the pose distribution.
Specifically, we apply random horizontal flips along the x-
axis, leveraging the symmetry of the human body.

A.4. Baselines
For POP [7] and FITE [5], we directly utilize the official
model weight provided for inference. As for SkiRT [8], we
train the model using the official code and successfully re-
produce the results reported in the original paper. We per-
form inference using the trained model weight.

A.5. Details on Perceptual Study
We follow the official rendering scripts including camera
and lighting configurations for baseline methods [5, 7, 8]
and ours, where the output point cloud is rendered using a
surfel-based renderer in Open3D [15] with a point size of 5.
To assess the geometric visual quality, we render the front
and the back views at a high resolution of 1024×1024. The
deployed baseline models are discussed above in Sec. A.4.
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Figure A1. The segmented loose regions of each cloth in the ReSynth [7] dataset. We identify the loose regions in the front and back
view normal maps utilizing the segmentation model SAM [4].
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Figure A2. The clothing-cut maps for five subjects in the ReSynth [7] dataset. The first row depicts the clothing-cut maps distinguished
by three different colors, while the second row illustrates the corresponding segmented regions. Specifically, the yellow color denotes
the masked region, the blue indicates the body parts requiring deformation, and the green marks the loose parts to be modeled utilizing
free-form generation. Finally, the last row displays the complete predictions generated by our model.

50 participants are presented with a set of 25 examples
consisting of different subjects and poses, randomly sam-
pled from the ReSynth [7] dataset results without cherry-
picking. In each example, the GT reference is always put in
the leftmost column, and we randomize the ordering of the
results of different methods on the right. Fig. A3 shows an
example. For each example, the participants are asked to se-
lect the most preferred single option based on the following
two criteria: (1) realism, wrinkle details, smoothness, uni-
formity, and the presence of artifacts contribute to the over-
all visual quality of the clothing shape; (2) the similarity to

the reference GT result. Due to the inherent randomness
in the generated results, an exact match with the reference
effect may not be necessary. Therefore, priority should be
given to the first point, which is the overall visual quality.

B. Extended Results and Discussions
B.1. Discussions on the Evaluation Metric
As pointed out by DPF [9] and FITE [5], we emphasize that
conventional metrics used in the previous works [7, 8, 11],
Chamfer distance (CD) and L1 normal discrepancy (NML)



Figure A3. Example of perceptual study image. We randomize
the ordering of the results of different methods per example. We
always put the GT result in the leftmost column.

implicitly assume a one-to-one mapping from body pose
to the clothing shape. However, in reality, the clothing
shape possesses diversity and randomness which can be in-
fluenced by many other factors such as the motion speed
and the history [9]. Consequently, given a similar or same
pose, multiple clothing statuses can be reasonable, as illus-
trated in Fig. B4. Our model generates plausibly-looking
results that, may not conform strictly to the ground truth,
hence obtaining high CD errors.

To further highlight the limitations of the CD metric,
we examine a case involving generated points for a long
dress. When reducing the number of points generated by
the free-form generator Ng from 32768 to 4096, the CD
error substantially decreases (from 14.06 to 6.57, a 53.3%
reduction), as shown in Fig. B5. However, this reduction
comes at the cost of point density uniformity and detail,
such as wrinkles. This observation has been proven in pre-
vious works that the CD metric lacks awareness of the point
density distribution [2, 6, 12]. This phenomenon also helps
explain why methods like POP [7] and SkiRT [8] achieve
lower CD errors despite significantly lower point densities
on loose skirts and dresses.

Building on the limitations discussed, we employ a
generation-based metric, FID, which compares distribu-
tions and relaxes the strict one-to-one mapping constraint,
alongside the reconstruction-based MSE loss to assess our
model’s quality holistically. This evaluation approach better
aligns with the model’s objective.

B.2. Quantitative Results
In addition to the user study, we also employ the GPT-4o
model [1] to select the best result across all methods. The
testing prompt is as follows: "Select the most preferred
option based on the following two criteria: (1) realism,
wrinkle details, smoothness, uniformity, and the presence
of artifacts, which contribute to the overall visual quality
of the clothing shape; (2) similarity to the reference ground

Figure B4. An example illustrating the stochasticity of clothing
shape with two similar given poses.
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Figure B5. Illustration of the paradox of lower CD error with
worse visual quality. Reducing the number of generated points
signficantly decreases the CD error, yet results in visually unsatis-
factory outcomes with non-uniform point density.

truth (GT) result. Priority should be given to the first crite-
rion, which emphasizes the overall visual quality." The per-
subject preference rates of human users and GPT-4o are pre-
sented in Tab. B1, denoted as PR-H and PR-G, respectively.
As shown, the results are generally consistent between the
two, with our method demonstrating significant advantages
in handling challenging cases. For the two most difficult
skirts, the preference rates from GPT-4o reach 80%, while
human users show a preference rate exceeding 85%, con-
firming the effectiveness of our hybrid design in modeling
loose clothing. For tighter skirts, our model performs on par
with FITE [5] and SkiRT [8], both of which rely purely on
LBS but still generate promising results.

For reference, we also follow previous works [5, 7, 8, 14]
to evaluate the Chamfer Distance (CD) and the L1 nor-
mal discrepancy (NML), as specified by the formulas in the
main paper. The default units for reporting CD and NML
are ×10−4m2 and ×10−1, respectively. Tab. B2 presents
the quantitative errors on the ReSynth [7] dataset. Notably,
while FITE [5] exhibits the highest visual quality among
the baselines, it also results in significantly larger quanti-
tative errors. This further verifies that the CD metric may
not accurately reflect performance, as discussed in Sec. B.1.
Our model shows comparable performance to FITE in CD
errors while significantly reducing the normal discrepancy,
which corroborates our observation that FITE generates un-



Table B1. Perceptual study results on the ReSynth [7] dataset for each subject. We report the preference rates (PR-H) obtained from
a perceptual study involving 50 participants, alongside the preference rates (PR-G) voted by the GPT-4o [1] model. The final scores are
generally consistent with those of the human participants. The best results are highlighted in bold, and the second best are underlined. The
subject IDs are listed in descending order based on the looseness of the clothing.

Subject ID felice-004 janett-025 christine-027 anna-001 beatrice-025 Average

Method PR-H ↑ PR-G ↑ PR-H ↑ PR-G ↑ PR-H ↑ PR-G ↑ PR-H ↑ PR-G ↑ PR-H ↑ PR-G ↑ PR-H ↑ PR-G ↑
POP [7] 0.4% 0.0% 0.8% 0.0% 0.8% 0.0% 1.2% 0.0% 0.8% 0.0% 0.8% 0.0%

SkiRT [8] 3.2% 0.0% 0.0% 0.0% 3.2% 0.0% 12.8% 20.0% 10.4% 60.0% 5.9% 16.0%
FITE [5] 28.0% 40.0% 6.0% 20.0% 10.8% 20.0% 54.0% 40.0% 50.8% 20.0% 29.9% 28.0%

Ours 68.4% 60.0% 93.2% 80.0% 85.2% 80.0% 32.0% 40.0% 38.0% 20.0% 63.4% 56.0%

Table B2. Additional quantitative comparison of different methods on the ReSynth [7] dataset for each subject.

Subject ID felice-004 christine-027 janett-025 anna-001 beatrice-025

Method CD ↓ NML ↓ CD ↓ NML ↓ CD ↓ NML ↓ CD ↓ NML ↓ CD ↓ NML ↓
POP [7] 7.34 1.24 1.72 0.97 1.24 0.89 0.62 0.82 0.34 0.75

SkiRT [8] 6.45 1.25 1.54 0.99 1.10 0.82 0.58 0.81 0.31 0.77
FITE [5] 11.27 2.38 2.16 1.15 1.52 1.05 0.74 0.91 0.46 0.85

Ours 10.61 1.78 2.18 1.01 1.59 0.94 0.81 0.84 0.48 0.74

SkiRT GTFITE OursPOP

Figure B6. Qualitative comparison between baselines and our model for modeling loose clothing, with highlighted details. Subject
IDs from top to bottom: “felice-004” and “janett-025”. Best viewed zoomed-in on a color screen.

natural and excessively bent wrinkles, whereas our model
effectively captures complex local details.

B.3. More Qualitative Results
In this section, we present additional visualization compar-
isons that extend the results discussed in the main paper.
Fig. B6 illustrates the details of the generated loose cloth-
ing, which are highlighted within the red box. Further-
more, we showcase three testing examples for each of the
five subjects from the ReSynth [7] dataset, as illustrated in
Figs. B15 to B19. We recommend zooming in to observe
finer details, particularly the wrinkles in skirts and dresses.
Please refer to the visualization demo in our supplementary

materials, which includes sequences of testing data to better
demonstrate the high-quality performance of our method.

As discussed in the main paper, the advantages of our hy-
brid modeling approach become particularly evident with
loose skirts or dresses, as illustrated by the examples in
Figs. B15 and B16. For tighter skirts, LBS-based models
like FITE [5] already perform well since the clothing ad-
heres closely to the body. As shown in Figs. B18 and B19,
FITE [5] generates nearly perfect outputs that closely re-
semble the ground truth, and our model produces results
comparable to those of FITE [5]. However, it is noteworthy
that FITE [5] still fails to fully eliminate redundant points
on the open surface of tighter skirts (see Fig. B7).



Figure B7. Visualization results of loose clothing. As shown,
while FITE [5] successfully captures intricate details like wrinkles
in tighter skirts, it still faces the “open-surface” challenge. In con-
trast, our model generates more accurate geometry and achieves
superior visual quality.

Above all, our approach stands out in its ability to op-
erate without subject-specific templates coupled with LBS
fields, allowing for more flexible, multi-subject modeling.
This opens up new possibilities for avatar modeling while
maintaining high performance.

B.4. Multi-Subject Experiments
In this study, we explore the potential of hybrid model-
ing for loose clothing and significantly improve the perfor-
mance under a single-subject setting. Nevertheless, our hy-
brid paradigm can be naturally extended to modeling multi-
ple garments, conditioned on various global garment codes.
Experimental results show that our unified, multi-subject
model demonstrates promising performance in modeling
various types of skirts and long dresses, confirming the ex-
pressive power of our free-form generator.

To explore the learned latent space of garment codes, we
perform interpolation experiments focusing on two crucial
attributes: length and tightness. As shown in Fig. B8, our
model allows effective control over garment length through
manipulation of the garment code. Furthermore, when vary-
ing the tightness, the generated skirts smoothly transition
from tight to loose. In summary, our model successfully
disentangles pose-related effects from garment-specific fea-
tures, providing controllable and realistic generation results.

B.5. Fitting Non-skirt Clothing
Although the main focus of this paper is to investigate the
hybrid modeling of loose garments such as skirts and long
dresses, we also conduct experiments to handle non-skirt

Skirt Long Dress

Tight Skirt Loose Skirt

Figure B8. Interpolation results when varying the length and
the tightness of the skirt.

clothing, e.g. suits. Note that the global pose feature is ex-
tracted from the PointNet++ [10] without part-aware local
feature learning. Visualization results (Fig. B9) illustrate
the generator’s capacity to autonomously learn and repre-
sent loose components, such as collars. This demonstrates
the flexibility and the promising expressiveness of the pro-
posed free-form generator.

Figure B9. Our hybrid model can also handle non-skirt cloth-
ing such as suits. As shown on the left-hand side, the free-form
generation module can model loose regions such as collars.

B.6. More Ablation Studies
Effects of the Hybrid Paradigm. To evaluate the effi-
cacy of the proposed free-form generator, we quantitatively
assess the deformation-only variant using the ReSynth [7]
dataset. As shown in Tab. B3, this variant achieves an
average FID of 56.23 and MSE of 2.74, comparable to
SkiRT [8]. In contrast, our full model substantially im-
proves these metrics, demonstrating the effectiveness of the
free-form generation module in capturing the dynamics of
loose clothing. Additionally, we examine a generation-only
variant that discards LBS-based deformation and synthe-
sizes full-body clothing points from a global pose feature,



Table B3. Ablation study of the free-form generation module on the ReSynth [7] dataset. In the setting Ours∗, the free-form generator
is removed, relying solely on body point deformation to model loose clothing.

Subject All felice-004 janett-025 christine-027 anna-001 beatrice-025

Metric FID ↓ MSE ↓ FID ↓ MSE ↓ FID ↓ MSE ↓ FID ↓ MSE ↓ FID ↓ MSE ↓ FID ↓ MSE ↓
Ours∗ 56.23 2.73 63.12 5.72 52.10 2.06 59.29 2.41 51.68 1.84 54.96 1.62
Ours 37.75 2.61 42.41 5.24 27.95 1.92 37.43 2.35 39.63 1.89 41.24 1.68

(a) Gen-Only (Full-Body) (b) Full Model

Figure B10. Ablation study of the full-body free-form genera-
tion. (a) Completely discarding LBS deformation results in a sig-
nificant performance drop when compared to (b) our full model.

as illustrated in Fig. B10. The resulting noisy surfaces in
articulated regions and overly coarse details further empha-
size the necessity of the hybrid paradigm.

Number of Patches. We conduct ablation studies to ma-
nipulate the number of patches K utilized in the free-form
generator. This experiment also serves to illustrate the in-
herent complexity involved in modeling loose garments.
As a case study, we select the long dress, which features
intricate details such as wrinkles. The results, shown in
Fig. B11, are compared across different patch sizes: K =
2, 4, 8, 16, 32, 64.

Visualization (a) shows that K = 2 fails to capture
the intricate details of the long dress, resulting in over-
smoothed outcomes. In addition, empirical findings indi-
cate that the setting K = 8 is sufficient to generate high-
quality details, producing superior visual results. When K
surpasses 8 or is set to 4, the generated surface exhibits in-
creased noise, leading to a loss of clarity in fine-grained
details. Notably, features such as clothing wrinkles become
less distinct and sharply defined. This observation suggests
that modeling the ostensibly complex long dress may be less
daunting than anticipated. Furthermore, it verifies the re-
markable expressiveness of our hybrid framework. Unless
otherwise stated, K = 8 is selected for our experiments.

To better investigate the properties of the free-form gen-
erator, we visualize K = 8 patches of two loose skirts and a
long dress, each rendered in different colors. As illustrated
in Fig. B12, our free-form generator successfully recovers
authentic fine-grained details while preserving good locality

(a) K=2

(e) K=32 (f) K=64(d) K=16

(c) K=8(b) K=4

Figure B11. Ablation studies of the number of patches K used
in the free-form generator. The visualizations reveal that opting
for K = 2 leads to smoothed results without details. Empirically,
selecting K = 8 yields the best visual outcomes. In other cases,
the surface becomes progressively noisier, compromising the clar-
ity of fine-grained elements like clothing wrinkles.

within each patch. Generally, the points within each patch
are arranged in a vertical direction, and different patches
seamlessly integrate to form a complete surface. These re-
sults, derived from data-driven learning, suggest that de-
composing a loose garment into several “vertical" patches
is a plausible approach for detailed modeling. Additionally,
we visualize the convergence process of the free-form gen-
erator throughout the training phase in the demo.

Clothing-cut Map. As discussed in the main paper, di-
rectly employing the generation module to fill in the loose
regions in the previous LBS-based framework can cause
split-up artifacts. Here we present additional cases demon-
strating that this issue occurs under various poses, as illus-
trated in Fig. B13. This issue becomes particularly evident
when the underlying leg approaches the surface of the dress.
In such instances, deformed points from the leg and the gen-
erated region become disjoint, causing the dress to appear
torn. Additionally, a partial shape of the underlying leg can
be observed through the cracks in the broken dress.

B.7. Efficiency Analysis
We evaluate the inference speed of our approach and other
SOTA methods on an RTX 3090 GPU, with a batch size of
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Figure B12. Visualization of the generated K = 8 patches
which comprise the loose dress and skirts. We show the results
on the three subjects.

w/o Clothing-cut Map w/ Clothing-cut Map

Figure B13. More ablation study results of employing clothing-
cut map. Split-up artifacts between two modules can result in dis-
jointed, noisy areas and torn appearances. The use of the clothing-
cut map notably mitigates this issue.

1. Additionally, we report the FLOPs and parameter counts
to quantify computational resource requirements. As shown
in Tab. B4, our model has the smallest number of parame-
ters and achieves real-time inference speed at 64.1 FPS. No-
tably, our model significantly outperforms SOTAs without
introducing extra computational overhead.

Table B4. Efficiency analysis of our method with other works.

Method FID ↓ FPS ↑ FLOPS (G) Params. (M)
POP [7] 57.87 69.9 128.81 11.33

SkiRT [8] 53.32 79.9 77.12 11.13
FITE [5] 39.02 31.5 68.87 11.02

Ours 37.75 64.1 78.82 10.83

B.8. Limitations and Failure Cases
Currently, our method focuses on single-frame modeling of
clothed humans and does not consider the temporal cues
that could provide constraints for clothing deformation due
to motion. Consequently, discontinuities may appear in
transitions between frames. Future work could explore in-
corporating temporal information to achieve smoother and
more realistic modeling results.

Despite employing pose augmentation, our model re-
mains susceptible to failure when confronted with ex-
tremely challenging poses, resulting in clothing penetration
artifacts, as depicted in Fig. B14 (a). This issue is partic-
ularly noticeable when the skirt becomes tighter. Training
our free-form generator on a larger dataset could enhance
its robustness to out-of-distribution poses and reduce such
artifacts. Additionally, while our pipeline employs differ-
ent strategies to handle deformed and generated areas, we
cannot guarantee the perfect blending of point clouds from
two modules. As illustrated in Fig. B14 (b), “seams” at the
boundary regions are occasionally observed.

However, it is crucial to note that our experiments un-
derscore the promise and versatility of our proposed hybrid
approach. By transcending the limitations imposed by rely-
ing solely on LBS-based deformation, our method demon-
strates notable expressive capabilities. We believe that with
larger datasets, our approach has considerable potential for
superior performance in future applications.

(a) penetration artifact (b) seams artifact

Figure B14. Two typical failure modes. (a) In challenging poses,
the generated skirt or dress occasionally collides with the human
body. (b) At the boundaries between deformed and generated re-
gions, our model sometimes produces discontinuous "seams".



SkiRT GTFITE OursPOP

Figure B15. Additional Qualitative comparison between baselines and our model. The subject ID is “felice-004” from the ReSynth [7]
dataset. Best viewed zoomed-in on a color screen.
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Figure B16. Additional Qualitative comparison between baselines and our model. The subject ID is “janett-025” from the ReSynth [7]
dataset. Best viewed zoomed-in on a color screen.
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Figure B17. Additional Qualitative comparison between baselines and our model. The subject ID is “christine-027” from the
ReSynth [7] dataset. Best viewed zoomed-in on a color screen.
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Figure B18. Additional Qualitative comparison between baselines and our model. The subject ID is “anna-001” from the ReSynth [7]
dataset. Best viewed zoomed-in on a color screen.
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Figure B19. Additional Qualitative comparison between baselines and our model. The subject ID is “beatrice-025” from the
ReSynth [7] dataset. Best viewed zoomed-in on a color screen.
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