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A Additional Information for the Related Work

In this section, we provide additional information about the related work, which was

presented in Section 2 from the paper. Most existing studies are primarly focused

on addressing network forgetting in a popular and general continual learning scenario

[1, 2, 4, 5, 6, 13, 14, 15, 16], where the class information and task boundaries are

always given during the training and testing phases. However, these studies can not

deal with a more challenging and realistic continual learning scenario in which both

task and class information are not available. This paper addresses this challenging

learning scenario by developing a novel memory approach, called the Dynamic Expan-

sionable Memory Distribution (DEMD) approach, which can automatically preserve

critical past examples over time without knowing class or task information. Unlike

existing memory-based methods [1, 2, 4, 5, 6, 13, 14, 15, 16], which can easily ensure

the category balance into the memory buffer by utilizing task or class labels, the pro-

posed approach compares the sample similarity between the memorized and incoming

samples as the signal for implementing the memory expansion process, which can also

ensure the preservation of the diversity of data samples over all categories.

A related approach, to the one proposed in the paper, is called the Dynamic Cluster

Memory (DCM), proposed in [19], which can also deal with task-free unsupervised

continual learning. The proposed approach differs from the DCM in three aspects: (1)

The DCM evaluates the data similarity on the high-dimensional data space, such as the

image information given by pixels. In contrast, the proposed approach evaluates the

data similarity on the low-dimensional latent space, which is faster and more memory

efficient; (2) The DCM chooses a sample as the centre point for each memory cluster.

In contrast, the proposed approach forms an explicit memory distribution (Gaussian

distribution) in a low-dimensional feature space as a compact representation for every

sub-memory buffer; (3) This paper proposes a novel theoretical framework and pro-

vides theoretical guarantees for the proposed approach while the DCM from [19] does

not have any theoretical results.
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Figure 1: The number of memory distributions and data distributions at each training
time.

B The Additional Information for the Experiment Set-

tings

B.1 The hyperparameter configuration and GPU hardware.

In all experiments performed and whose results are reported in this paper, we use Adam

[7] as the training algorithm for various learning models. For training the Adam op-

timization algorithm we consider a learning rate of 0.0001 . The number of training

epochs for each training time during continual learning is five. Our experiments are

performed using one Tesla V100 GPU and running on the Ubuntu 18.04.5 operating

system.

In the experiments, we set the hyperparameter λ = 0.057, for the memory updating

in Eq. (5) and (6) from page 4 of the paper, for all datasets.
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(a) λ = 0.053
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(b) λ = 0.054
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(c) λ = 0.055
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(d) λ = 0.056

Figure 2: The expansion signals produced by the proposed approach using different λ
configurations.

B.2 The description of the datasets

In this section, we provide the detailed information about the datasets used in the ex-

periments from the paper.

Split MNIST. The MNIST dataset [10] comprises images of handwritten digits, fea-

turing 60,000 samples for training and 10,000 samples for testing. We construct Split

MNIST by partitioning the MNIST dataset into five segments as outlined in [3], with

each segment containing samples from two distinct classes.

Split Fashion. The Fashion dataset [18] consists of images depicting clothing items,

including a training set of 60,000 samples and a testing set of 10,000 examples. We

generate Split Fashion by dividing the Fashion dataset into five segments in accordance

with [3], where each segment encompasses samples from two different classes.

Split CIFAR10. The CIFAR10 dataset [8] is composed of natural images, containing

60,000 training samples and 10,000 testing samples. We create Split CIFAR10 by

segmenting CIFAR10 into five parts based on the methodology described in [3], with
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each part including samples from two distinct classes.

Split SVHN. The SVHN dataset [12] is a real-world image dataset featuring digits

cropped from pictures of house number plates, consisting of 73,257 training images

and 26,032 testing samples. We develop Split SVHN by dividing SVHN into five

segments as per [3], where each segment contains samples from two different classes.

We resize all images from Split MNIST, Split Fashion, Split SVHN, and Split CI-

FAR10 to dimensions of 32× 32× 3. Additionally, we resize the images from CelebA

[11], MINIImageNet [17], and ImageNet [9] to 64× 64× 3.

C Additional Ablation Studies

In this section, we provide additional ablation studies in the following sections.

C.1 The memory expansion process

In order to investigate the memory expansion process of the proposed approach, we

record the number of memory distributions and data distributions (task IDs) at each

training time. The results of the proposed approach are plotted in Fig. 1 for 4 different

λ values in Eq. (5) and (6) from page 4 of the paper. From these results we can observe

that using a small threshold λ encourages the proposed approach to frequently create

more memory distributions. On the other hand, using an appropriate λ configuration

enables the creation of an appropriate number of memory distributions.

C.2 The dynamic signals

To investigate the expansion process of the memory buffer in the proposed approach

during the training, we propose to estimate and record the expansion signals using the

left-hand side of Eq. (6) from the page 4 of the paper at each training time. We pro-

vide the results in Fig. 2a-d for λ ∈ {0.053, 0.054, 0.055, 0.056}. These results shos

that different threshold λ configurations can lead to small differences in the expansion

processes. In addition, using a large threshold λ configuration promotes the proposed
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Figure 3: The FID score of various models in continual learning.

approach to yield more peak expansion signals, resulting in creating more memory dis-

tributions. In contrast, a small threshold λ configuration leads to a few peak expansion

signals.

C.3 Different memory sizes

In this Appendix, we evaluate the performance of various models when considering dif-

ferent memory configurations. In the plots from Fig. 3 we provide the results for train-

ing various models when considering the memory buffers of ρ = {1000, 1500, 2000}

samples, where ρ = |M(j)|Max, represents its maximum buffer capacity. From the

results, we find that using a large memory capacity can increase the FID score. In ad-

dition, the proposed approach outperforms the current state-of-the-art on all memory

configurations.

C.4 The visual results

In this Appendix, we provide additional visual results, which are shown in Fig. 4a,b,c

and d for Split MNIST, Split Fashion, Split SVHN and Split CIFAR10. The visual

results show that DEDM can produce diverse high-quality generation results following

the continual learning of these datasets.
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(a) Split MNIST (b) Split SVHN

(c) Split Fashion (d) Split CIFAR10

Figure 4: The visual results generated by the proposed approach after learning the Split
MNIST, Split SVHN, Split Fashion and Split CIFAR10, respectively.

C.5 The hyperparameter selection

In this section, we provide the detailed information for the hyperparameter selection

for DEDM. Specifically, for a given data stream, we record the number of memory

distributions over times of training during the continual learning. In addition, we also

consider 300 training samples as the validation dataset. We initially search the thresh-

old λ, from Eq. (6) on page 4 of the paper, from 0.01 to 0.1 and then narrow the search

space from 0.04 to 0.06. The best λ is determined when the model achieves the best

performance on the validation dataset.

C.6 The computational costs

Since the proposed memory approach can be optimized independently, we can only

perform the memory optimization process without involving the model’s training pro-

cedure. Specifically, we perform the proposed memory approach on the Split MNIST,
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Figure 5: The computational costs required for the proposed memory approach without
the model training procedure.

Split Fashion, Split SVHN and Split CIFAR10 and the results are presented in Fig. 5.

The empirical results show that the optimization time for the proposed approach is less

than one hour, which is computationally efficient.
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