
Appendix

Table of Contents
A. Ablation Study 14

A.1. Ablation on Question Grounding . . . 14
A.2. Ablation on Searching Algorithm . . . 14
A.3. Ablation on Searching Utility Metrics 15
A.4. Correlation between Search Utility and

Video Understanding 15

B. Complexity Analysis on T* 15

C. Detail Analysis on LongVideoBench 17

D. Implementation Details 17
D.1. Implementation of Training-free T* . 17
D.2. Implementation of Trainable T ∗ . . . 17
D.3. Implementation of the baseline

VideoAgent 18
D.4. Video QA Implementation 19
D.5. Implementation of Different Search

Strategies 19

E. Data Annotation Details 19
E.1. HAYSTACK-LVBENCH 19
E.2. HAYSTACK-EGO4D 19

F. Data Annotation Interface 20

G. Qualitative Analysis 21

H. Prompt Design 21
H.1. Prompt for Question Grounding . . . 21
H.2. Prompt for Question Answering . . . 21
H.3. Prompt for Distractor Generation . . . 21

A. Ablation Study
This section investigates the sensitivity of different parame-
ters in our proposed T* framework.

A.1. Ablation on Question Grounding
Question Grounding transforms the original question into
spatially queryable targets, as detailed in Section 4. In this
study, we examine how increasing computational resources
for Question grounding affects the efficiency and quality of
the search process. Specifically, we analyze the impact of
scaling Vision-Language Models (VLMs) from 7B (LLaVA)
to 72B (LLaVA) parameters, as well as varying the number
of initial frames, from 8 to 32.

The results, summarized in Table 7, indicate that increas-
ing the VLM size and the number of initial frames marginally
enhances both the effectiveness of the search process and
downstream task performance. These results suggest that
Question Grounding can be effectively achieved with modest
resource allocations, offering a favorable balance between
performance and resource usage.

Grounding VLM Frames TFLOPs Visual F1 QA Acc

LLaVA-OneVision-7B 8 26.9 59.9 59.8

LLaVA-OneVision-72B 8 148.5 60.6 59.9

LLaVA-OneVision-7B 32 108.2 60.7 60.3

Table 7. Impact of VLM size and initial frame count on question
grounding and search effectiveness on LV-HAYSTACK. Experimen-
tal settings are aligned with the baseline setup reported in Section
4 (main paper). Our results indicate that increasing the resources
for question grounding results in marginal improvements in search
effectiveness (< 1% gain in QA Acc.).

A.2. Ablation on Searching Algorithm
T* aims to reduce computational overhead by partially rep-
resenting the video as an n× n image grid. This approach
leverages well-trained image models to systematically re-
place irrelevant grid cells until the target is found, based on
a specified threshold θ.
Impact of Grid Size (n): We investigate how the configura-
tion of the concatenated image grid affects both the search
cost and the efficacy of the search process. Figure 5 displays
the impact of varying grid sizes n (represented on the X-axis)
on the average number of search steps and the corresponding
average accuracy on LongVideoBench [72] XL subset.
Impact of Return Threshold θ: We examine how varying
the return threshold θ impacts the efficiency and efficacy of
the search process. As demonstrated in Figure 6, increasing
the threshold tends to improve the accuracy of the search
results but at the cost of increased computational effort. This
trade-off is critical; thus, we have selected a default threshold
of θ = 0.6 for a balanced approach.

1 2 4 8 12 16
Image Grid Size (n)

100

200

300

400

500

600

700

800

St
ep

s

Cost (Steps)
Utility (Performance %)

52.5

53.0

53.5

54.0

54.5

55.0

55.5

56.0

56.5

Pe
rf

or
m

an
ce

(%
)

Figure 5. Grid Size Impact on Search Performance. The red line
represents the average number of search iterations for different im-
age grid configurations, while the blue line shows the performance
on the LongVideoBench [72] XL subset using 8 frames and the
LLaVA-72B as the downstream QA model.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Return Threshold

0

100

200

300

400

500

600

700

St
ep

s

Cost (Steps)
Utility (Performance %)

50

51

52

53

54

55

56

Pe
rf

or
m

an
ce

(%
)

Figure 6. Impact of Return Threshold θ. The graph clearly
illustrates the trade-off between threshold settings and search per-
formance: lower thresholds result in quicker searches but may
reduce accuracy, while higher thresholds enhance accuracy at the
expense of increased search steps and computational cost.

A.3. Ablation on Searching Utility Metrics
In our primary evaluation framework, we adopt Temporal
Similarity and Visual Similarity as core metrics for measur-
ing search utility. To further investigate the robustness of our
framework, we include semantic distance as an additional
metric for ablation studies. Semantic distance measures
the alignment of high-level features between predicted and
annotated frames, as encoded in pretrained models such
as openai/clip-vit-large-patch14.

The results on HAYSTACK-EGO4D are shown Appendix
Table 8. While this metric provides insights into the semantic
relevance of frames, our results reveal that its scores are
closely clustered across methods, ranging from 87.9 to 89.2.

Therefore, semantic distance, while informative, does not
significantly discriminate between methods due to the high-
level feature similarities shared across retrieved keyframes.
We exclude it as an evaluation metric to maintain focus on
the more distinctive temporal and visual search utility.

A.4. Correlation between Search Utility and Video
Understanding

As discussed in Section 2.3, we propose multiple temporal
and visual metrics to evaluate search utility. To identify the
metrics most correlated with long-form video understanding,
we analyzed the Pearson and Spearman correlation coeffi-
cients between utility scores and downstream task accuracy.
Table 9 shows that Temporal F1 has the highest Pearson
correlation, while Temporal Precision has the highest Spear-
man correlation with downstream performance, highlighting
these metrics as strong predictors of effective video under-
standing.

B. Complexity Analysis on T*

In this section, we analyze the time and cost complexity of
the T* search algorithm. T* leverages adaptive temporal and
spatial upsampling to efficiently collect partial information
from the video and progressively determine the keyframe
distribution. Based on previous observations, T* prioritizes
high-probability regions for efficient keyframe localization,
similar to an A* search algorithm. By retaining only a por-
tion of the video grid cells in each iteration (up to 1/b of total
cells), T* effectively performs a multi-branch search guided
by a heuristic scoring function, forming a b-way search tree.

As illustrated in Figure 7, T* is a quaternary search algo-
rithm operating on a b-ary search tree. At each step, video
frames are sampled on a grid with b = n × n cells. The
top 25% of regions based on their scores are retained, and
the algorithm prioritizes sampling frames around these high-
scoring regions. Similar to the A* algorithm, T* uses a
heuristic scoring function to select branches, thereby short-
ening the search path. Ultimately, it performs a quaternary
search with a heuristic function on a b-ary tree.

To simplify the discussion, assume a video of length L,
containing only one frame that satisfies the target condition
ft. The grid size is b = 2 × 2, and the probability that
the scoring function selects the correct branch is P . The
complexity analysis is conducted for the worst-case, best-
case, and average-case scenarios.
Worst Case (P ≤ 1

b): In the worst case, when P ≤ 1
b , the

scoring function provides no effective guidance, effectively
selecting branches at random. The algorithm degrades to a
linear search, sequentially checking each frame until the tar-
get frame ft is found. The time complexity can be expressed
as:

Tworst = O(L), (9)

Method Frames↓ HAYSTACK-EGO4D
Temporal Visual Semantic

Precision ↑ Recall ↑ F1 ↑ Precision ↑ Recall ↑ F1 ↑ Precision ↑ Recall ↑ F1 ↑

Baselines: Static Frame Sampling

Uniform [72] 8 1.0 3.4 1.6 58.0 63.0 60.2 87.2 89.3 88.2
Uniform [72] 32 1.1 14.8 2.0 58.5 65.6 61.5 87.3 90.4 88.8

Baselines: Adaptive Frame Selection

VideoAgent [68] 10.1 1.7 5.8 2.7 58.0 62.4 59.9 87.0 88.9 87.9
Retrieval-based 8 1.2 4.2 1.9 58.5 61.7 59.9 87.3 88.7 88.0
Retrieval-based 32 1.0 13.8 1.9 58.5 65.4 61.4 87.3 90.5 88.9

Ours: T ∗ for Zooming In Temporal Search
Attention-based 8 2.2 7.5 3.3 58.4 62.5 60.2 87.3 89.1 88.1
Training-based 8 1.4 4.9 2.1 58.0 61.5 59.6 87.2 89.0 88.0
Detector-based 8 1.7 5.8 2.7 63.8 70.1 66.8 87.2 88.9 87.9
Detector-based 32 1.8 26.3 3.4 62.9 76.2 68.9 87.2 91.4 89.2

Table 8. Results of searching utility on LV-HAYSTACK. Best results for the 8-frame setting are underlined, and best results for the 32-frame
setting are in bold. We include semantic metric (detailed in Appendix A.3) for ablation. Scores range closely from 87.9 to 89.2, showing
limited differentiation across methods compared to temporal and visual metrics.

Metric Pearson
Correlation

Pearson
p-value

Spearman
Correlation

Spearman
p-value

Temporal F1 0.901 0.037 0.700 0.188
Temporal Precision 0.828 0.084 0.975 0.005
Visual F1 0.829 0.083 0.600 0.285
Temporal Recall 0.655 0.231 0.700 0.188
Visual Recall 0.568 0.317 0.500 0.391
Visual Precision 0.327 0.591 0.100 0.873

Table 9. Pearson and Spearman correlations (with p-values) be-
tween search utility metrics and downstream task accuracy. The
highest correlations are highlighted in bold for Temporal F1 and
Temporal Precision, suggesting they are strong predictors of effec-
tive video understanding performance.

0 – 3.6k

900 – 1.8k 2.7k – 3.6k

900 – 1.3k 1.3k – 1.5k 2.7k – 3k 3k – 3.6k

450 - 900 1350 - 1800 2250 - 2700 3150 - 3600

1350 - 1575

1462 - 1575

1532 - 1539 1519 - 1575

1350 - 1462

1405 - 1462900 -957

⋯ ⋯

⋯⋯

⋯

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

⋯

⋯

⋯ ⋯ ⋯

⋯

1.8k – 2.7k

1.5k – 2.4k

⋯

🚩

⋯ ⋯ ⋯

⋯⋯

Where is the white trash can?

Target

Figure 7. Illustration of the T* search process on a b-ary tree.
The video duration is 3.6k seconds, and the target white trash
appears between 1532 and 1539 seconds. Numbers in the figure
indicate the visited intervals of nodes, while the lines indicate the
visited nodes and the search trajectory.

where L is the total number of video frames.

Best Case (P = 1): In the best case, when P = 1, the
scoring function always selects the correct branch leading
towards the target frame. The algorithm approaches the
target frame directly at each step, similar to a b-ary search.
The time complexity is given by:

Tbest = O(logb L), (10)

where b = n× n is the branching factor determined by the
grid size.
General Case (1b < P < 1): In the general case, the scoring
function improves branch selection accuracy based on scene
correlations (e.g., a kitchen scene is more likely to contain a
refrigerator than a bed). The search process can be modeled
as a tree with depth:

m = logb L, (11)

where m represents the depth of the tree. At each level, the
expected number of attempts to correctly select the branch is
1
P . Therefore, the total expected number of nodes visited is:

E[N] = m× 1

P
, (12)

where E[N] represents the expected number of nodes vis-
ited.

The average time complexity is then given by:

Tavg = O
(
logb L

P

)
, (13)

where the efficiency of the algorithm is inversely propor-
tional to the scoring function’s accuracy P . A higher P

Figure 8. Empirical results on search complexity of T*. We show
the number of iterations of T ∗ on the LongVideoBench dataset,
dividing videos with lengths between 0 and 4000 seconds into
four groups. The figure shows the generally required intensity of
iterative search as the length of videos vary.

value reduces the exploration of incorrect branches, signifi-
cantly improving efficiency.

Figure 8 shows the behavior of T* across various video
lengths, presenting empirical statistics of search steps from
our LV-HAYSTACK dataset. The statistical results demon-
strate that for videos ranging from 100 to 3600 seconds,
the average number of search steps is categorized into four
equidistant groups. The average number of steps required by
T* increases gradually with video length. Notably, for videos
longer than 3000 seconds, the maximum number of search
steps recorded is 161, the minimum is 5 steps, and the aver-
age is 41.5 steps to complete the search. These variations
are attributable to the differing intrinsic correlations within
the content of each video, which informs the heuristic-based
object detection process.

C. Detail Analysis on LongVideoBench
Table 10 highlights the impact of incorporating T* as a frame
selection module on QA accuracy across different video
lengths in the LongVideoBench dataset.
Overall Effectiveness of T*: Incorporating T* consis-
tently improves QA accuracy for both GPT4o and LLaVA-
OneVision-72B across all video lengths, demonstrating the
effectiveness of the keyframe selection module in enhancing
video understanding. For instance, in XLong videos (15-60
minutes), GPT4o’s accuracy improves from 47.1 to 51.55
± 0.35, while LLaVA-OneVision-72B’s accuracy increases
from 53.7 to 55.25 ± 0.25.
Impact of Video Length: The improvements are more pro-
nounced for longer videos (XLong and Long), where infor-
mation density is higher, suggesting that T* is particularly
effective in identifying and prioritizing relevant frames in
complex scenarios. For shorter videos (Medium and Short),
while the improvements are relatively smaller, T* still con-
tributes to stabilizing performance across multiple runs.
Effect of Model Size: Larger models, such as LLaVA-
OneVision-72B, benefit slightly more from T* compared

to smaller models like GPT4o, especially for longer videos.
This indicates that larger models can better utilize the high-
quality keyframes selected by T*.

In conclusion, T* consistently enhances QA accuracy
across various video lengths, with greater impact on longer
videos and larger models. These results demonstrate the
potential of T* in improving video-language understanding
and reasoning in long-form videos.

D. Implementation Details

D.1. Implementation of Training-free T*

Question Grounding: For Question Grounding, we pri-
marily use the LLaVA-OneVision 7B model, applying it to
8 uniformly sampled frames. The prompt adheres to the
official release guidelines, and the specific template used is
listed in Table 12.

Iterative Temporal Search: The default configuration for
the image grid size is b = 8×8. We set the return threshold θ
at 0.6 for object-based and training-based scoring functions
as trade-off in Figure 6. For the attention-based method, we
typically use the sum of the attention scores from the target
object in the last layer of each frame. This approach was
chosen because using smaller models or shallower layers
resulted in performance below the baseline. Additionally, the
process terminates after three iterations to manage the high
computational costs associated with using the 72B model.

Downstream Question Answering: For downstream task
evaluations, we experiment with the most prominent state-
of-the-art (SOTA) models, both open- and closed-source,
namely GPT4o and LLaVA-OneVision 72B. For GPT4o, we
use the official API. For LLaVA, we employ the official code.
The prompt template for this testing is listed in Table 13.

D.2. Implementation of Trainable T ∗

In our framework, both object-based and attention-based T*
methods score each cell within the image grid and guide
zooming based on straightforward rules. The training-based
T* approach, however, renders this iterative search process
learnable.

To learn the search policy, we employ a reinforcement
learning approach. Its action space, reward function, and
loss function are described as follows:
Action Space To implement trainable scoring, we replace
YOLO’s detection header with a single-layer Multilayer Per-
ceptron (MLP). This MLP maps high-level detection fea-
tures into a score, indicating the likelihood that a specific
area within a frame contains the visual context necessary
to answer the question. For an image grid with b = n × n
cells, each cell is assigned a predicted score, represented as

LongVideoBench

Model and Size #Frame
Video Length

XLong Long Medium Short
15-60min 2-10min 15-60s 8-15s

GPT4o 8 47.1 49.4 67.3 69.7
GPT4o + T* 8 51.6 ± 1.4 51.7 ± 1.7 72.9 ± 1.2 70.2 ± 0.2
LLaVA-OneVision-72B 8 53.7 57.4 74.1 73.0
LLaVA-OneVision-72B + T* 8 55.3 ± 1.3 63.5 ± 1.2 76.6 ± 1.3 73.7 ± 0.2

GPT4o 32 50.5 57.3 73.5 71.4
GPT4o + T* 32 53.3 ± 1.2 59.2 ± 1.2 74.3 ± 0.0 71.4 ± 0.0
LLaVA-OneVision-72B 32 56.5 61.6 77.4 74.3
LLaVA-OneVision-72B + T* 32 62.6 ± 1.2 63.9 ± 1.2 79.3 ± 0.0 74.6 ± 0.0

Table 10. Detailed downstream task evaluation results for T ∗ as an additional frame selection module for VLMs on LongVideoBench. The
metric is QA accuracy (%). We run T* two times and report the average accuracy and standard deviation (±).

C ∈ Rn×n, which serves as the action space:

C,B ← ScoreFunction(G, T) = MLP(YOLO(G, T)).
(14)

Reward Function To evaluate the quality of selected frames,
we define a reward function based on their effectiveness in an-
swering the question. Using the predicted scores C ∈ Rn×n,
we select K frames and pass them to a VLM for question
answering. The reward is calculated as the difference in
accuracy between selected frames and a uniform baseline:

reward = VLM(Kselected, Q)− VLM(Kuniform, Q), (15)

where VLM(Kuniform, Q) represents the baseline accuracy
using uniform sampled frames, and VLM(Kselected, Q) rep-
resents the accuracy using frames sampled based on the
predicted relevance scores C.
Loss Function To optimize the trainable scoring mech-
anism, we employ a reinforcement learning-inspired ap-
proach using Monte Carlo estimation. We sample K frames
M times based on the predicted scores C. These sam-
pled frames are passed into a Visual Language Model (e.g.,
llava-OneVision-7B) to answer the question. The av-
erage accuracy across these attempts is used as the reward
signal. The loss function for training is defined as:

loss =
M∑
i=1

(rewardi × CrossEntropy(C, Ci)) , (16)

where Ci represents binary labels for the i-th Monte Carlo
sample, with selected cells for K as 1 and others as 0,
and rewardi is the reward for the i-th sample, according
to Eqn. 15.

This formulation ensures that the model is reinforced to
predict scores C aligning with the sampling labels Ci when

the reward is positive. Conversely, when the reward is nega-
tive, the model adjusts its predictions to reduce the similarity
between C and Ci, penalizing incorrect sampling patterns.
Training and Inference The search policy is trained on
existing short videos and tested on unseen long videos. Dur-
ing the inference phase, T* uses the output of the trained
YOLO model as a heuristic score. All training and inference
operations are carried out on a cluster of 8*H800 Nvidia
GPUs.

We observed that models trained on the NExT-QA dataset
can also effectively identify better frames for long video
tasks, such as those in LongVideoBench. This suggests that
unifying video representation as an n × n grid—whether
for short or long videos—enables a consistent approach.
Furthermore, identifying better frames should be considered
a foundational task, facilitating cross-dataset generalization.

D.3. Implementation of the baseline VideoAgent
VideoAgent [68], the state-of-the-art temporal search base-
line, leverages LLM-based video keyframe selection to
optimize VLM input. It generates captions to describe
video content and incrementally aggregates relevant in-
formation for question answering. We adapt the original
public code to make it runnable for long video haystack
setting and benchmark. While the original VideoAgent
implementation uses BLIP-Large [30] for caption gen-
eration, which is significantly larger than our YOLO-
based approach [8] (110M parameters), we adapted the
implementation to use CLIP-1B [51] for fair comparison.
Specifically, we employed clip-vit-large-patch14
and blip-image-captioning-large* for our exper-
iments.

*Available at CLIP and BLIP

https://huggingface.co/openai/clip-vit-large-patch14
https://huggingface.co/Salesforce/blip-image-captioning-large

D.4. Video QA Implementation
For downstream video question answering experiments, we
uniformly use LLaVA-OneVision 72B [28] as our QA model.
This open-source VLM excels in processing multimodal in-
puts, integrating text, image, and video analysis. We selected
this model for its ability to handle arbitrary video frames and
its demonstrated superior performance across diverse VQA
benchmarks.

D.5. Implementation of Different Search Strategies
The core of T* leverages a well-trained open-world YOLO
model for rapid object verification based on question ques-
tions. We evaluate T*’s effectiveness through three distinct
search strategies:
• Retrieval-based Search: Utilizes the YOLO model [8] to

exhaustively scan and rank video frames based on target
object detection confidence. The top 8 frames (by default)
are selected as final outputs.

• Zooming In Search: Implements a hierarchical approach
starting with an N ×N image grid matrix at low fps and
resolution. The search progressively refines both fps and
resolution in promising segments identified through object
detection and visual cues, ultimately returning 8 frames.

• Trainable Search: Adapts frame processing dynamically
through YOLO model fine-tuning. Beginning with uni-
form sampling on an N ×N image grid, it predicts cor-
relation coefficients to guide subsequent grid sampling
distributions. This process iterates three times by default,
maintaining an 8-frame output. The model is trained on
NExT-QA dataset and evaluated across multiple datasets.

E. Data Annotation Details
To curate data for our benchmark, we repurpose established
long-video understanding datasets that focused on question
answering. To represent different visual scenes, we cover
both egocentric and allocentric views [18, 72], resulting in
two diverse subsets HAYSTACK-EGO4D and HAYSTACK-
LVBENCH. This approach not only allows direct comparison
with past results but also saves time and resources for ex-
tensive data curation. We ask crowd-source annotators to
identify keyframes and answers for HAYSTACK-EGO4D,
while directly borrowing the keyframes and answers anno-
tated from LONGVIDEOBENCH.

E.1. HAYSTACK-LVBENCH

To curate data for HAYSTACK-LVBENCH, we utilize the
frame positions from LONGVIDEOBENCH [72] as ground-
truth human-recommended frame indices. This decision is
based on LONGVIDEOBENCH’s annotation process, where
annotators were required to propose questions based on given
frame positions. Since LONGVIDEOBENCH only retained
frame position records in the validation set, we exclusively

constructed HAYSTACK-LVBENCH using data from the vali-
dation set. Furthermore, considering our focus on long-video
understanding, we only included cases from the 3600-second
duration group. To ensure broader applicability, we also ex-
cluded cases that referenced subtitles in their questions. As a
result, we obtained a final set of 114 videos and 342 question
pairs, none of our selected cases relied on text subtitles. You
can use our script ‘Longvideobench2LVHaystackFormat.py’
to obtain HAYSTACK-LVBENCH and check more detailed
statistics.

E.2. HAYSTACK-EGO4D

To create HAYSTACK-EGO4D, we conducted data annota-
tion on a dataset comprising 1,324 video clips, which were
extracted from the original 988 videos containing a total of
15,092 questions. The video clips were pre-segmented by the
Ego4D dataset to ensure that each clip contained sufficient
context for answering the associated questions. This seg-
mentation also simplified the annotation process, as shorter
videos allowed annotators to better comprehend the content
and efficiently identify keyframes.

The detailed instructions and interface (see Figure 9) pro-
vided to the annotators are described in the next section,
Data Annotation Interface. Annotators were instructed to
watch each video clip and answer a predefined set of ques-
tions. For every question, they were required to identify and
mark several keyframes within the video that were relevant
to their answers. Subsequently, they answered the questions
based on these selected frames.

To assist annotators, we provided a recommended time
interval to help them quickly identify relevant frames. How-
ever, we also instructed them to watch the entire video be-
fore answering the questions, as the recommended intervals
identified by the Ego4D dataset may not always be accu-
rate. Watching the full video is crucial for ensuring logical
correctness in keyframe identification. For example, some
questions involve events such as ”What is the second time
that somebody does something?”, requiring the annotator to
identify both the first occurrence and the second occurrence
to answer accurately.

In cases where a video did not provide sufficient clues to
answer certain questions (potentially due to mistakes in the
original dataset), annotators were instructed to respond with

”Not able to answer the question” and provide corresponding
reasons (e.g., ”The object does not occur in this video”).

Since the annotators were not native English speakers, we
utilized the googletrans package to translate the orig-
inal questions and the interface into their native language
(Chinese). Similarly, their answers were translated back into
English for consistency.

To ensure the quality of the annotations, we randomly
sampled 100 question-answer pairs from the annotated
dataset. Only 2 obvious mistakes were identified in the

Figure 9. Annotation Interface for Videos. This interface allows annotators to answer questions based on video clips by keyframe
annotations. Annotators can navigate to specific videos and questions using the provided controls (Video / Question ID). The current
question is displayed with the recommended time range identified by the Ego4D dataset. Annotators can select key video frames and delete
or modify annotations. A text box is available for entering answers based on observed video content.

Figure 10. The visualization of frame selection results demonstrates the effectiveness of our approach compared to baseline methods. Our
method consistently identifies more relevant and temporally diverse keyframes, capturing important frames that directly address the question.
In contrast to baseline approaches which may select redundant or less informative frames, our strategy achieves better coverage of key events
while maintaining temporal coherence across the video sequence.

sample, indicating a decent overall annotation quality. Con-
sequently, we retained this annotation set for further analysis.

F. Data Annotation Interface

Our data annotation interface facilitates annotators to provide
precise answers to questions based on video clips. Key
features include:

• Video Navigation: Annotators can jump to a specific
video and question using the provided controls (e.g., Video
ID and Question Number).

• Question Display: The current question is displayed
prominently, along with the recommended time range for
viewing relevant keyframes in the video.

• Frame Selection: Annotators can select specific video

frames for reference and delete or adjust their selection as
needed to support their answer.

• Answer Input: A dedicated text box allows annotators to
provide their responses based on the observed content in
the selected video frames.

• Navigation Controls: Quick navigation buttons enable
moving between videos or questions efficiently.

This tool ensures accurate, contextual, and streamlined an-
notations for video content analysis tasks.

G. Qualitative Analysis

Figure 11 compares uniform sampling with T* sampling
for long-format video understanding. The task involves
identifying a ”metal cylinder” in an hour-long video. Uni-
form sampling, which selects 8 frames randomly, misses key
frames containing the metal cylinder.

In contrast, T* sampling focuses on semantically rele-
vant frames, successfully capturing those featuring the metal
cylinder. This highlights T* sampling’s ability to prioritize
critical visual information

H. Prompt Design

In this section, we include the prompts designed for envi-
ronment representation, focusing on question grounding and
question answering tasks.

H.1. Prompt for Question Grounding

The following is the prompt used by our system for question
grounding:

Prompt Template for Question Grounding

<system prompt>
Here is a video:
<image>
<image>
<image>
...
Here is a question about the video:
Question: <Question>
Options: <Options>

When answering this question about the video:
1. What key objects to locate the answer?

- List potential key objects (short sentences,
separated by commas).

2. What cue objects might be near the key objects
and might appear in the scenes?

- List potential cue objects (short sentences,
separated by commas).

Please provide your answer in two lines, directly
listing the key and cue objects, separated by
commas.

Figure 12. The template of a question grounding prompt T*.
<system prompt> is the default system instruction from LLaVA
and the <image> are PIL.Image objects for each frame and other text
elements are strings.

This prompt is designed to generate a representation of
the environment that facilitates the grounding of queries in a
structured, object-centric manner.

H.2. Prompt for Question Answering
The following prompt is used to answer questions based on
the embodied environment representation. This design is
adapted from LLaVA:

Prompt Template for Question Answering

<system prompt>
Select the best answer to the following multiple-

choice question based on the video.
<image>
<image>
<image>
...
Question: <Question>
Options: <Options>

Answer with the option letter from the given choices
directly.

Figure 13. The template of a question answering prompt.

H.3. Prompt for Distractor Generation

Prompt Template for Distractor Options

<system prompt>
You are an expert in creating challenging multiple-

choice questions.
For the question: <question> with the correct answer

<answer> generate 4 plausible but incorrect
distractors that are closely related to the
correct answer in context, category, or
characteristics, making the question more
challenging.

Ensure that the distractors could reasonably seem
correct to someone who is unsure of the answer.

The output format should be:
"1. \"<Distractor 1>\"",
"2. \"<Distractor 2>\"",
"3. \"<Distractor 3>\"",
"4. \"<Distractor 4>\"".

Broad Impact
The T* framework provides an efficient keyframe extraction
solution compatible with any model or task, with applica-
tions in video summarization, healthcare training, entertain-
ment indexing, and real-time surveillance. Its computational
efficiency reduces energy consumption, aligning with sus-
tainability goals. Additionally, the LV-HAYSTACK bench-

𝑻∗ Searching

Question: Where was the metal cylinder before I picked it up?
A. On the rubber mat to my right. B. On the floor to my left.
C. On the metal table in front of me. D. On the wooden shelf above me.
E. Next to the rubber mat behind me.

Answer: A.

Uniform Sampling

Figure 11. Comparison of uniform sampling and T* sampling for long-format video understanding. In this example, the task involves
identifying a “metal cylinder” in an hour-long video. Uniform sampling fails to include relevant frames, as it randomly selects 8 frames
across the video. In contrast, T* sampling dynamically selects frames containing the metal cylinder, providing the necessary visual context
for effective understanding.

mark advances standardized evaluation practices, encourag-
ing innovation in long-form video understanding.

Our proposed dataset is also applicable to foundation
models that process entire videos. With our LV-HAYSTACK
dataset which consists of both training and test sets, we aim
to show that keyframe supervision can act as a guiding mech-
anism, enabling models to first identify the most relevant
keyframes from video, then use them to produce a contextu-
ally grounded answer. This approach can be more structured,
efficient, and effective than directly predicting an answer
from a long-form video.

	 Appendix
	Ablation Study
	Ablation on Question Grounding
	Ablation on Searching Algorithm
	Ablation on Searching Utility Metrics
	Correlation between Search Utility and Video Understanding

	Complexity Analysis on T*
	Detail Analysis on LongVideoBench
	Implementation Details
	Implementation of Training-free T*
	Implementation of Trainable T*
	Implementation of the baseline VideoAgent
	Video QA Implementation
	Implementation of Different Search Strategies

	Data Annotation Details
	Haystack-LVBench
	Haystack-Ego4D

	Data Annotation Interface
	Qualitative Analysis
	Prompt Design
	Prompt for Question Grounding
	Prompt for Question Answering
	Prompt for Distractor Generation

