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Supplementary Material

A. Details on Model Implementation

A.1. Invertible QR Code Transition

We directly adopt the invertible neural network (INN) ar-
chitecture of ISN [8] to implement the QR Code transition
procedure. Instead of the 16 invertible blocks used in the
original paper, we only use 2 of them to lower the model
complexity, since we empirically find that this transition
does not need that large volume of parameters.

As mentioned in Sec. 3.3, we employ a constraint on
the transformed QR Code to ensure that it can be identi-
fied to restore the secret message. We adopt the same strat-
egy as ArtCoder [12], which is to simulate the most used
Google ZXing [10] rules that only read the center pixel of
each module in a QR Code. According to Xu et al. [15],
the pixels closer to the module center should have a higher
probability to be sampled. As a result, this sampling proce-
dure can be modeled by performing a Gaussian convolution
operation upon each code module. Specifically, given a QR
Code with n→n modules of size m→m, a Gaussian convo-
lution kernel sized m→m is used to convolute each module
with a stride of m and derive an n → n sample result. The
feature map is then binarized with a threshold, which is em-
pirically set as 0.02 (given the pixel values range in [0, 1])
in this paper, since we find this threshold value can guaran-
tee the identifiability of transformed QR Code. This means
those pixels with values greater than 0.02 are regarded as
white modules and the rest are black modules. During train-
ing, we obtain an error map ω which indicates the wrongly
transformed code modules and backward the gradient for
model optimization. This process is demonstrated in Fig. S1
and the optimization target can be formulated as the follow-
ing loss function:
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in which Iq and I→q represent the original QR Code and
transformed result, respectively, qc(·) indicates the Gaus-
sian kernel convolution and bink(·) is the binarize operation
with the threshold as k. Since the aforementioned calcula-
tion is differentiable, it can be optimized jointly with other
network modules during training.

In our implementation, we resize the QR Code to a size
of 5n → 5n and use a 5 → 5 kernel to perform the convolu-
tion operation. The value of n depends on the version of QR
Code and it is 37 for version 5 that we adopt in this paper.
For each subsequent version, the value of n is 4 greater than
the previous version, e.g., it is 41 for version 6 and so forth.
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Figure S1. Demonstration of the QR Code scanning simulation.
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Figure S2. Some transition results. Here Conv. and Bin. indicate
convolution and binarization, respectively.

Fig. S2 shows some transition results, we also provide the
QR Code and its error map after the aforementioned con-
volution and binarization operations. Although the transi-
tion can sometimes lead to some wrongly transformed code
modules, it does not affect the identifiability.

A.2. AttnFlow Model

We use some tokenizers to convert images to tokenized rep-
resentations and some detokenizers to transform them back
in the AttnFlow model. In our implementation, all the tok-
enizers used are based on the vision transformer (ViT) [2]
architecture. We make some slight changes on the ViT-Base
model that contains 12 transformer blocks with the token
dimensionality and the multi-layer perceptron (MLP) size
being 768 and 3072, respectively. Specifically, we reduce
the model complexity in our implementation by lowering
the block number to 2 and the MLP size to 2048. The patch
size used is 16 → 16. For the detokenizer, we simply use
an MLP for dimension projection followed by a reshaping
operation and two convolutional layers with GELU [3] as
activation function to convert the tokens back to image.

For the self-attnetion and cross-attnetion blocks used in
AACB, they have the same token dimensionality and MLP
size as the tokenizers. We choose to use 4 AACBs in our
full model since we find this block number makes a good
balance between model performance and training cost.



EMR = 4.4558EMR = 5.9167TRA = 1 TRA = 0 EMR =4.6749TRA = 0

Figure S3. An example of decoded QR Code with higher EMR
but lower TRA.

B. Experiment Details

B.1. Metrics Calculation

LPIPS We use LPIPS [16] as part of the optimization tar-
get during model training and one of the metrics for stego
image quality evaluation. We calculated it with a VGG [11]
model pre-trained on ImageNet [1].

TRA We calculate the text recovery accuracy (TRA)
with the following scheme:

TRA(Îqr) =

{
1.0 if Îqr is identifiable
0.0 otherwise

, (S2)

where Îqr indicates the decoded QR Code. The final TRA
is average value upon the whole testing dataset.

EMR We calculate the error module rate (EMR) by mea-
suring the wrongly decoded QR Code modules. Given a de-
coded QR Code, we binarize and compare it with the ground
truth to derive the error rate.

It is worth noticing that, although low EMR can gener-
ally guarantee a high TRA, these two metrics are not neces-
sarily positively correlated. An example is shown in Fig. S3,
the second and third decoded QR Codes have lower EMR
than the first one but they are not identifiable. This can
be caused by two reasons, the first is that the finder and
alignment patterns are damaged, making the code cannot be
detected, corresponding to the second case in Fig. S3 (the
finder pattern in the lower left is damaged). The second is
that, a high error rate is caused in a small area, making the
error correction (ECC) scheme of QR Code fail to restore
the error, corresponding to the third case in Fig. S3.

B.2. Training Details

Our model is implemented with PyTorch [9] and is trained
on 4 NVIDIA GeForce 3090 GPUs. We set the batch size
as 8 for each GPU and the mode is trained for 50K itera-
tions. The initial learning rate is 0.0001, which decays by
10% after each epoch until it reaches 0.00001. The model
is optimized with the AdamW optimizer [7] with ε1 = 0.9
and ε2 = 0.999. The hyper-parameters in the loss func-
tion (Equation 10) are set as ϑ = 5.0, ε = 0.2, ϖ = 3.5,
ϱ = 16 and ς = 3.0. The trainnable parameters ϑi intro-
duced in Equation 3 are initialized as 0.01 in the beginning.
The training host images are randomly cropped from the
original images as 224 → 224 patches. The overall training
process takes for about 13 hours.

Table S1. Comparison of distortion parameters used by StegaS-
tamp and RMSteg. Here Bri. is brightness, Sat. is saturation, Noi.
is Gaussian noise level and Tra. is transition.

Method Bri. Hue Sat. Contrast jpeg Noi. Blur Tra.

StegaStamp 0.3 0.1 1.0 [0.5, 1.5] 25 0.02 7 0.10
Ours 0.3 0.1 1.0 [0.5, 1.5] 60 0.07 7 0.02

Take photoPrint Out Crop Out Stego Image

Figure S4. How we derive the stego image in the printing test.

B.3. Distortion Simulation

We adopt the same types of distortions as StegaStamp [13]
with some changes in the hyper-parameters. We provide
a comparison of the settings of StegaStamp and our in
Tab. S1. We largely increase the Gaussian noise level to
fit for our task. We lower the distortion level of JPEG com-
pression since we find that there is no need to use a very low
JPEG compression quality for training to achieve sufficient
robustness when a high-level Gaussian noise is employed.
For the parameter of transition, since we manually crop the
stego image out from the photo, rather than using object
detection as StegaStamp, we do not need such a high pa-
rameter setting to promise enough robustness. As for how
the distortion simulation is implemented and how do these
parameters work, we strongly suggest referring to the de-
scription in the original paper [13].

B.4. Printing and Photography

In this paper, we choose to use the case of printing and pho-
tography to measure the method robustness under extreme
real-world distortions. During experiment, we first print the
stego images out and take photos for them. For one stego
image, we print it for multiple times on the same paper to
prevent the fluctuation of printer’s printing quality. Then,
we manually crop the stego images out from the photos
using CamScanner [4] and use them for decoding test. A
demonstration of the above workflow is shown in Fig. S4.

The printer we used for experiment is an HP OfficeJet
Pro 8710 inkjet printer. We choose the printing quality
of ‘Normal’ (among ‘Draft’, ‘Normal’ and ‘High’). The
printed image size on paper is 5.4cm → 5.4cm. We take
photos with an iPhone 13 Pro indoors under regular illumi-
nation. We take 5 photos for each image and choose the
best value for final metrics calculation. For the experiments
under different shooting angles, we maintain a vertical dis-
tance of 11 cm between the lens and the paper, which is our
default shooting distance.



Table S2. The ωi values when using different numbers of AACBs.

Block Number ω1 ω2 ω3 ω4

1 0.1354 – – –
2 0.0062 0.1425 – –
3 0.0070 0.0915 0.0087 –
4 0.0022 0.1350 0.0745 0.0070

C. Further Experiment and Discussion

C.1. Trainnable Coefficients in AACB

We set the coefficient ϑi of the cross-attention item in the
AACB transformation function (Equation 3) as a trainnable
parameter to let the network learn by itself. We initialize
this parameter as 0.01 at the beginning and optimize it dur-
ing training. Here we provide the final converged values of
ϑi in the models with different numbers of AACBs. The
result is shown in Tab. S2.

C.2. Anti-Distortion Ability

We evaluate the anti-distortion ability of our method in the
paper. Here we further consider more real-world image dis-
tortions.

Tampering During image transmission, tampering is
one of the most common and severest distortions. We ran-
domly tamper (in our implementation, we use some black
squares and mask them on the stego images) a certain ra-
tio of the areas in the stego image and calculate the de-
coding accuracy to measure the robustness against this kind
of distortion. The results are shown in Tab. S3. It can be
observed that, our method has significantly better robust-
ness against tampering than previous methods. We specu-
late that, after introducing the transformer architecture into
normalizing flow, secret message can be embedded into
host images in a manner similar to redundant coding due
to the inner-channel feature interaction brought by atten-
tion mechanism. This allows for the correct recovery of
information even when some areas of the image are tam-
pered. Take the two cases shown in Fig. S5 as example, our
method can achieve a high decoding accuracy under both
cases. However, the remaining four CNN-based methods
have high error rates in the tampered regions. This can to
some extent prove that, CNN-based method tends to hide
secret message in corresponding areas. Therefore, when a
certain area is damaged, the corresponding area of the se-
cret message will also fail to decode correctly. More results
are provided in Appendix C.5.

Light Field Messaging Wengrowski et al. [14] consider
the message embedding robustness against on-screen shoot-
ing, e.g., taking photo of the stego image displayed on a PC
screen. Since the quantitative study upon this topic requires
a large amount of experiments, such as the influence of dif-
ferent displayers and camera lenses, which are not the main
contribution of this paper, here we just provide some qual-

Figure S5. Decoding results under image tampering. QR Codes
with green borders can be successfully identified while those with
red borders cannot. Zoom in for better observation.

itative results. We use an iPhone 13 Pro as the shooting
camera and the displayer used to show the stego images is a
BenQ EW2770QZ with 2560→1440 resolution. As shown
in Fig. S6, we choose different shooting distances for a
comprehensive demonstration. It can be observed that, with
the shooting distance grows, the distortion of Moiré pattern
becomes more and more obvious. However, compared with
other methods, our method can keep a high decoding ac-
curacy against this kind of distortion. We believe this can
again prove the superiority of transformer-based scheme in
handling robust steganography task. More results are pro-
vided in Appendix C.5.

C.3. Ablation Study

Since the quantitative results have been provided in Sec. 4.4,
here we mainly focus on the ablation experiment implemen-
tation details and qualitative comparison results.

IQRT We validate the effectiveness of invertible QR
Code transition by removing it from the pipeline, which
means we directly tokenize the QR Code image and feed the
tokens to the ITF module and then to the AttnFlow model.
As shown in Fig. S7, the stego images generated without
IQRT have more artifacts. As discussed in the paper, since
we only apply one constraint on the transformed QR Code
to guarantee its identifiability, the learned transition strat-
egy will tend to help achieve a better steganography quality.
However, as shown in Tab. 4, IQRT can lead to a slightly
worse decoding accuracy. This is due to the information
loss that sometimes happens during the transition process.
Two examples can be found in Fig. S2. Overall, we believe
this module can effectively improve the stego image quality.

ITF Module The invertible token fusion module learns



Table S3. Decoding accuracy under tampering rate r. The best and second-best results are marked in red and blue colors.

Method r = 5% r = 10% r = 15% r = 20% r = 25% r = 30% r = 35%
TRA↑ EMR↓ TRA↑ EMR↓ TRA↑ EMR↓ TRA↑ EMR↓ TRA↑ EMR↓ TRA↑ EMR↓ TRA↑ EMR↓

ISN† 0.571 2.878 0.349 5.008 0.110 7.137 0.005 9.259 0.000 11.39 0.000 14.24 0.000 16.37
HiNet† 0.575 2.698 0.354 4.725 0.105 6.723 0.007 8.736 0.000 10.78 0.000 13.48 0.000 15.53

StegaStamp 0.915 3.221 0.673 5.080 0.245 6.902 0.029 8.716 0.001 10.54 0.000 12.89 0.000 14.68
StegaStamp† 0.918 3.038 0.732 4.801 0.336 6.539 0.050 8.277 0.001 9.994 0.000 12.30 0.000 14.05

Ours 0.996 0.119 0.995 0.340 0.966 0.755 0.818 1.324 0.533 2.059 0.233 3.192 0.113 4.195

Figure S6. Stego images and decoding results under the distortion of light field messaging. QR Codes with green borders can be success-
fully identified while those with red borders cannot. Zoom in for better observation.

a transform matrix for QR Code image tokens. Compared
with the invertible 1→1 convolution (IConv) proposed by
GLOW [6], our ITF learns a patch-wise (or, token-wise)
transformation instead of a channel-wise one. We believe it
can rearrange the tokens just like IConv that can re-permute
the channels in order to compensate for the insufficient dis-
tribution transformation ability of normalizing flow due to
the affine-formed functions that have to be adopted for the
invertibility of the model. The experiment result proves the
competence of ITF module and as introduced in the paper,
we empirically find that this module can help derive a better
distribution of the artifacts in the stego image. Some results
are also shown in Fig. S7, we believe this is to some extent
due to the token rearranging brought by ITF.

Cross Attention in AACB We introduce an extra cross-
attention item in Equation 3. We make this design because
we hope more feature interactions can happen between host
image tokens and QR Code tokens. As a result, we in-
corporate the cross-attention mechanism and add it to the
affine transformation function. As shown in Fig. S7, this
module can improve the visual quality of the stego image.
The results in Tab. 4 also shows that, the model with cross-
attention has an around 15% improvement in LPIPS.

Tokenized Representation We incorporate tokenized
representation (TR) in ITF module and AttnFlow model. To

validate the effectiveness of TR, we remove the ITF mod-
ule and replace the AttnFlow with CNN-based normalizing
flow models (ISN [8] and HiNet [5]). As the results shown
in Fig. S7, the stego images generated are similar to that
of original ISN and HiNet, containing obvious QR Code-
like artifacts. This proves that CNN-based normalizing flow
struggles to achieve a high-quality feature learning in the ro-
bust steganography task. In contrast, our transformer-based
scheme extends the model ability and can help generate
stego images with high visual similarity.

C.4. Limitation Analysis and Future Work

Although our RMSteg can achieve the state-of-the-art per-
formance in robust message embedding, it still has some
limitations currently. First, as mentioned in Sec. 4.4, our
method can help distribute the steganography residual in
heterogeneous regions to avoid perceptible artifacts. How-
ever, when facing host images with many homogeneous re-
gions, our method can fail to preserve a good visual quality.
It can be observed from Fig. S8 that, although the artifacts
is mainly concentrated in heterogeneous areas, the ratio of
this kind of regions is too small to preserve the overall vi-
sual quality. Secondly, although the embedding capacity of
RMSteg far exceeds previous methods, it still cannot con-
ceal large-scale secret information, e.g., multiple images.



Figure S7. Qualitative results of the ablation study. Zoom in for better observation.

Host Image Stego Image ResidualEnlarged Area 1 Enlarged Area 2

Figure S8. Generated stego images when facing host images with
many homogeneous areas.

In summary, we are going to focus on the two afore-
mentioned limitations, i.e., better steganography quality and
higher embedding capacity, in the future. We will explore
more schemes to extend the performance of transformer-
based steganography method. In addition, as mentioned in
Appendix C.2, we will consider more kind of real-world
image distortions to improve the method’s applicability.

C.5. Additional Results

In this section, we provide more qualitative results of the
experiments mentioned in the paper and appendix.

IQRT Results More QR Code transition results (corre-
sponding to Fig. 3) are provided in Fig. S9 - Fig. S10.

Steganography Results More stego images generated
by different methods (corresponding to Fig. 5) are provided
in Fig. S11 - Fig. S13.

Print-Proof Robustness More decoding results under
different shooting situations (corresponding to Fig. 6) are
provided in Fig. S14 - Fig. S16.

Anti-Tampering More decoding results under image
tampering (corresponding to Fig. S5) are provided in
Fig. S18.

Anti-Light Field Messaging More decoding results un-
der light field messaging (corresponding to Fig. S6) are pro-
vided in Fig. S17.



Figure S9. QR Code transition results, the transformed QR Codes are still identifiable.



Figure S10. QR Code transition results, the transformed QR Codes are still identifiable.



Figure S11. Stego images generated by different methods. Zoom in for better observation.



Figure S12. Stego images generated by different methods. Zoom in for better observation.



Figure S13. Stego images generated by different methods. Zoom in for better observation.



Figure S14. Decoding results under different shooting distances and angles. QR Codes with green borders can be successfully identified
while those with red borders cannot. Zoom in for better observation.



Figure S15. Decoding results under different shooting distances and angles. QR Codes with green borders can be successfully identified
while those with red borders cannot. Zoom in for better observation.



Figure S16. Decoding results under different shooting distances and angles. QR Codes with green borders can be successfully identified
while those with red borders cannot. Zoom in for better observation.



Figure S17. Stego images and decoding results under the distortion of light field messaging. QR Codes with green borders can be
successfully identified while those with red borders cannot. Zoom in for better observation.



Figure S18. Decoding results under image tampering. QR Codes with green borders can be successfully identified while those with red
borders cannot. Zoom in for better observation.
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