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1. Algorithm
The reverse process of diffusion models generates new sam-
ples from pure Gaussian noise distribution ϵ ∼ N(µ, σ).
This distribution has fixed mean µ and σ during training
and inference time. Based on the Counterfactual assump-
tion Eq. (5), if we aim to use a pre-trained model that has
learned a particular distribution, we must find an x′ that re-
sembles x but can produce different labels or, here, differ-
ent samples. In diffusion models, we show that ϵ can have a
similar function, and by finding a new ϵ′, we could generate
samples with a domain drift compared to where we used ϵ.
To find the appropriate ϵ′, we used Monte Carlo sampling to
match the mean µx and standard deviation σx of generated
images from the diffusion model (Dθ) to the mean and stan-
dard deviation of the target dataset ((DGT )), and with that,
we could find the best LD setting (δ) to ensure the generated
samples belong to DGT as well. Fig. 10 demonstrates the
comparison to pretraining and basic fine-tuning during the
training and inference.

2. Theoretical Analysis

Interpolative Nature of Diffusion Models In diffusion
models, the denoising process is represented as xt =

√
αt ·

x0 +
√
1− αt · ϵ where xt is the noisy image at timestep

t, x0 is the original image, and ϵ is Gaussian noise. By
shifting ϵ’s mean by δ, we bias the entire trajectory towards
the target domain, increasing stability and control of the in-
ference process. This shift effectively adapts the learned
feature space of the pre-trained model to the new domain
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Algorithm 1: Optimizing δ for Diffusion Models
Input: Dataset DGT , Pretrained Conditional

Diffusion Model M , List of δi values
Output: Optimal δi
for δi in List of δi values do

Fine-tune M ;
Generate images using pθ′(c) conditioned on δi;
Calculate mean µgen and standard deviation σgen
of the generated images;

Calculate mean µy and standard deviation σy of
the training set;

if µgen and σgen are closer to µy and σy then
Move δi in the same direction;

end
else

Move δi in the opposite direction;
end
Re-initialize M

end
Select the best-performing δi based on the

convergence;

without extensive retraining.

Empirical Evidence In Fig. 2 in the main paper, we ob-
serve divergence in both pixel and latent spaces without
LD, indicating that even small noise shifts cause signifi-
cant disturbances in the output distribution. This is evi-
denced by the green and purple images at both ends of the
generated spectrum. With LD, we achieve a more stable
and controllable noise distribution that remains resilient to
secondary changes. This stability is crucial for counterfac-
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Figure 10. An overview of Latent Drifting. Training and Inference compared to Pretraining and Basic FT.

tual image generation, allowing more precise control over
prompt or image conditioning. It also limits the inherent
diversity in diffusion models, which is favorable for coun-
terfactual image generation. We have demonstrated the ef-
fectiveness of this method across various datasets, includ-
ing Brain MR, Chest X-ray (Main Paper), Faces, Retinal
images, and Histopathology datasets.

Optimization Approach We formulate δ selection as min-
imizing a function f(δ) = E[d(G(z + δ), XGT )], where
G is the generator, z is the latent variable, and XGT rep-
resents target domain samples.To avoid complex optimiza-
tion, we use a surrogate function s(δ) = ||µG(δ)−µT ||1 +
||σ2

G(δ) − σ2
T ||1 based on the L1 norm on pixels’ values.

This surrogate function provides a computationally efficient
way to estimate domain adaptation quality, focusing on the
critical color distribution shift between source and target do-
mains. The results on the Face, Retinal, and Histopathology
datasets show that this method works in datasets with simi-
lar color distribution to the source dataset.

Theoretical Guarantee Assuming probabilistic Lipschitz

continuity of both f and s, we can provide an approximation
guarantee: |f(δ∗s )− f(δ∗)| ≤ C × (Lf +Ls)× ϵ where δ∗

and δ∗s are global minimizers of f and s respectively, Lf and
Ls are Lipschitz constants, and ϵ is the maximum discrep-
ancy between f and s. This guarantee ensures that our sim-
plified optimization approach yields near-optimal results for
the true objective function.

3. Distribution Analysis

In Figs. 11 and 12, we show how LD can effectively shift the
distribution of generated images in the spatial domain. This
is particularly suitable in medical imaging, where the im-
ages often follow certain patterns and textures, such as bony
structures or soft tissues. In Fig. 11, the mean µ and stan-
dard deviation σ of data are represented by circles, where
the center is µ and the radius is σ. It is shown that the
fine-tuning techniques improved the performance compared
to the Basic fine-tuning of Stable Diffusion, but combined
with LD, they can represent the distribution of the target
dataset much more efficiently. In Fig. 12, we present the



impact of different LD values (δ) on the fine-tuning to show
how they can be optimized to generate samples more similar
to the target distribution.
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Figure 11. Distribution of generated image pixels using different
methods with LD and without LD . The x-axis shows the mean
of the pixels, and the bubble size shows the standard deviation of
the pixels. : Real Data (µ = 0.198, σ = 0.013), : Stable
Diffusion + Basic FT w/o LD (µ = 0.478, σ = 0.093), Ref.:
Reference, CD: Custom Diffusion [10], DB: DreamBooth [16],
TI: Textual Inversion [6].

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3

0

0.1

0.2

0.3

µreal

σreal

Latent Drift (δ)

Im
ag

e
D

is
tr

ib
ut

io
n

µx
σx

Figure 12. Image pixel distribution (mean and standard deviation
of image pixels) with different LD values δ using SD + CD [10] +
LD on Brain MRI generation.

4. Experimental Setup

4.1. Datasets
We utilize the Chexpert [7] dataset and two longitudi-
nal brain MRI datasets, ADNI-1 [17], and OASIS-3 [11].
CheXpert [7] is a large dataset containing 224,316 chest
radiographs of 65,240 patients with disease classification
labels. ADNI-1 [17] is a longitudinal, multicenter dataset
for the early detection and tracking of Alzheimer’s disease
(AD) with 400 subjects with early mild cognitive impair-
ment (MCI), 200 subjects with early AD, and 200 normal
control subjects. OASIS-3 [11] includes PET and MR clin-
ical data for 1098 participants collected in 15 years from
605 cognitively normal adults and 493 individuals at var-
ious stages of cognitive decline ranging in age from 42
to 95 years. Over 2000 MR sessions with their meta-
data on age, sex, and diagnosis were extracted from both
datasets. The included diagnoses are Cognitively Normal
(CN), Mild Cognitive Impairment (MCI), and Alzheimer’s
Disease (AD). The ADNI and OASIS datasets have custom
licenses under ADNI and OASIS websites, respectively.
CheXpert is under CC BY 4.0.

CheXpert Preprocessing For CheXpert [7], we sample
100 AP-view radiographs for the following four categories:
No Finding (Healthy), Cardiomegaly, Pleural Effusion, and
Pneumonia as in [5]. By following the same settings as
in [5], each radiograph is cropped to non-zero borders, the
longest edge is resized to 512, and the aspect ratio is kept
fixed. Finally, the image is zero-padded to a resolution of
512× 512 px.

Brain MR Preprocessing To extract similar 2D slices from
all brain MRIs, we rigidly register the MRIs to a 1mm
isotropic MNI template and crop them to a common size
of 256x256x192 using UniRes [2]. For our experiments,
we used the 97th axial slice of the processed MRIs. Back-
ground noise was removed from the slices using a threshold,
and the image intensities were scaled to 0 and 1. Scans with
poor contrast or incorrect affine matrix were excluded from
the experiments. The final dataset consisted of 3269 scans
(414 AD, 634 MCI, 2214 CN) from 1461 patients. From
these scans, 200 samples (100 AD, 100 CN) were separated
as a test set. Additionally, 2658 image pairs were gener-
ated. Each pair includes a younger image as the source and
an aged image as the target. 2045 pairs are used for training
and 613 for testing. The pairs are generated together with
editing prompts, which include the patient’s information on
sex, age, and diagnosis.

Implementation Details We tuned the learning rate and the
number of steps required to fine-tune each method. Dream-
Booth [16] is fine-tuned for 1.5K steps for each concept
(3K in total), using a batch size of 1 and a learning rate of
2e−6. Custom diffusion [10] is trained for 1.5K steps, with

https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Data_Use_Agreement.pdf
https://www.nitrc.org/projects/oasis/


a learning rate of 1e−5, and a batch size of 1. Textual inver-
sion [6] is trained for 1K steps per concept, with a learning
rate of 5e − 4, a batch size of 1, and a vector embedding
representation of 64. The Stable Diffusion basic fine-tuning
was done with a learning rate of 1e − 5 and a batch size
of 16. The best overall performance for fine-tuning Stable
Diffusion was achieved after 10K epochs. The results with
different values of epochs are presented in Fig. 13. For all of
these models, we have used a single 24GB NVIDIA RTX-
4090 GPU. The training phase for each finetuning model
took roughly 2 hours for a single LD parameter and infer-
ence roughly half and hour for a batch of 100 images.
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Figure 13. Counterfactual Brain MR generation performance us-
ing SD + Basic FT + LD at different epochs.

5. Additional Results

5.1. Domain Expert Study

We have conducted a study involving 3 medical and neuro-
imaging experts, each evaluating 400 images (200 synthetic
and 200 real). The results are summarized in Tab. 7, where
sensitivity indicates the detection rate for synthetic images,
and specificity represents the accuracy in identifying real
images. Interestingly, while participants excelled at rec-
ognizing real images, they found it challenging to identify
synthetic ones. Participants reported that some synthetic
images were detectable due to their ’overly perfect’ appear-
ance and symmetry, whereas real images were often dis-
tinguishable by their inherent artifacts and imperfections.
This feedback suggests that our synthetic images closely
mimic real data, with occasional instances of idealized fea-
tures that may hint at their artificial nature.

Table 7. Domain Expert Study Results

Sensitivity Specificity Accuracy
20.53% 86.00% 54.19%

5.2. Other domains
We extend our experiments to adapt a model trained on the
LAION-5B dataset to one general domain dataset on faces
and two non-radiology medical datasets. We show that dif-
ferent data distributions can have different optimal values of
δ. For example, δ = −0.05 produces the best FID and KID
to adapt the pretrained model to the CelebHQ dataset. At
the same time, δ = 0 produces cartoonish images, and with
δ = 0.1, despite producing realistic looking faces, the im-
ages contain some artifacts. In the Retinal Fundus images,
it is evident that FID favors δ = 0.1, and KID prefers the
images produced by δ = −0.05. In terms of histopathology
images, we see a consistent improvement in δ = 0.05. Re-
ferring to Fig. 14, we see the changes, specifically in color
values.

Table 8. Textual Inversion with and without LD on various
datasets.

Dataset δ FID ↓ KID ↓

CelebAHQ [9]
-0.05 100.69 0.02±0.01

0 118.75 0.03±0.02

0.1 107.64 0.03±0.01

Fundus [3]
-0.05 119.48 0.10±0.02

0 189.52 0.18±0.03

0.1 117.81 0.12±0.02

Histopathology [8]
-0.05 113.09 0.12±0.01

0 169.83 0.16±0.02

0.1 128.51 0.13±0.02

5.3. Ablation Study
We evaluate the image generation performance of the SD +
Basic FT + LD at different steps. The best overall perfor-
mance was achieved after 10, 000 epochs of fine-tuning as
shown in Fig. 13.

Cross Attention Guidance Scale We evaluate the method
using the aforementioned prompt style by varying the cross
attention guidance parameter τ from 0.1 to 0.3 in Tab. 9 us-
ing the Pix2Pix Zero model for disease-conditioned image
editing. The cross-attention guidance parameter is used as
a learning rate in the optimizer of latent space parameters
of the model where the loss is the Mean Square Error Loss
between the cross-attention maps of encoded target prompt
with intermediate features and the cross-attention maps of
the encoded generated caption by BLIP [12] with interme-
diate features. For all cross-attention guidance values, the
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Figure 14. Results with different δ values on different domains: face, fundus, histopathology (δ = 0 denotes fine-tuning without LD).

Table 9. Quantitative evaluation of counterfactual image genera-
tion using Pix2Pix Zero + LD with different guidance scales (τ ).

Counterfactuals
τ FID ↓ KID ↓ AUC ↑ SSIM ↑

0.1 36.76 0.0163 0.77 0.86
0.2 36.12 0.0151 0.56 0.895
0.3 37.6 0.0170 0.43 0.9

Real Images
Source class 38.78 0.0192 0.13 1
Target class 23.11 0.0002 0.87 1

Original
(AD) τ = 0.3 τ = 0.2 τ = 0.1

Figure 15. Effect of guidance scale on counterfactual brain MRI
generation with Pix2Pix Zero + LD. Source Class: Alzheimer’s
Disease, Target Class: Cognitively Normal. : Removal, : Ad-
dition.

quantitative metrics of the counterfactuals improve com-
pared to the source images. The generated counterfactuals
successfully altered the disease diagnosis towards the target
class. Using τ = 0.1, the AUC score of the classifier evalu-
ated on the counterfactuals gets closer to the score from real
data of the target class. However, this comes at the trade-off
of losing parts of the subject’s identity. As expected, a low
guidance value results in stronger image manipulation. This
can be visually seen in Fig. 15, and quantitatively with the
decrease in SSIM in Tab. 9.

Effect of Different δ Values The value of δ is optimized
through a simple 1-D grid search in the range of δ ∈
[−0.1, 0.3], which remains constant during the fine-tuning
and inference process. We present the additional ablation
results in Tab. 10 and analyze the generated data distribu-
tion given different δ values in Fig. 12.

5.4. Additional Comparison

In Tab. 12, we compare Latent Drifting to Causal-Gen [14],
which is the SOTA in counterfactual medical image genera-
tion on CheXpert. As it can be seen, Latent Drifting outper-
forms Causal-Gen by a large margin in both image quality
metrics and the AUC. Furthermore, we fine-tune and eval-
uate ControlNet [18] on the Brain MR data with different
LD values and present the FID values in Tab. 11. The re-
sults show that LD drastically improves image generation
performance.

5.5. Results on Chest X-ray Image Generation

In order to evaluate our method on other organs and modal-
ities, we utilize the CheXpert [7] dataset. We finetune
the Stable Diffusion [15] using Textual Inversion [6] with
and without LD. For these experiments, we set the guid-
ance scale value to 5 and the number of sampling steps to
100. We empirically found that the best image generation
performance with different prompt settings is achieved us-
ing the initialization token ”radiation” and with placeholder
tokens, each corresponding to the respective observa-
tion (”<healthy-chest-radiation>”, ”<cardiomegaly-chest-
radiation>”, ”<fusion-chest-radiation>”, ”<pneumonia-
chest-radiation>”). The quantitative results are reported in
Tab. 2 of the main paper. Qualitative results are provided in
Figs. 16 and 17. The results in Fig. 16 illustrate that Latent
Drifting enhances the realism of the generated images. It is
worth noting that the pre-trained classifier evaluates if the
images correspond to their conditions.



Table 10. Ablation study on different δ values on Brain MR

δ -0.1 0 0.05 0.1 0.15 0.2 0.25 0.3

Healthy FID ↓ 114.54 137.39 82.1 68.18 65.77 56.89 73.58 83.45
KID ↓ 0.12 0.15 0.0804 0.0727 0.0785 0.0538 0.0815 0.0978

AD FID ↓ 126.93 121.03 98.11 58.97 83.29 93.77 116.25 120.17
KID ↓ 0.118 0.110 0.0812 0.057 0.0538 0.0949 0.1177 0.1249

Mean FID ↓ 120.73 129.21 90.11 63.58 74.53 75.33 94.91 101.81
KID ↓ 0.119 0.13 0.0808 0.0648 0.066 0.074 0.099 0.111

Table 11. Results on ControlNet [18] with and without LD for Brain MR Synthesis. δ = 0 denotes fine-tuning without LD.

δ -0.7 -0.6 -0.5 -0.4 -0.2 -0.1 0 0.1 0.2 0.4 0.5 0.6
FID 162.37 154.95 141.17 159.15 170.80 206.14 274.31 217.83 180.37 162.72 151.11 164.1

Table 12. Quantitative evaluation of counterfactual image genera-
tion using Pix2Pix Zero with LD compared to Causal-Gen [14] on
CheXpert.

Method FID ↓ KID ↓ AUC ↑ SSIM ↑
Causal-Gen [14] 51.75 0.0370 0.59 0.85
Pix2Pix Zero + LD (Ours)

τ = 0.1 36.76 0.0163 0.77 0.86
τ = 0.2 36.12 0.0151 0.56 0.89
τ = 0.3 37.60 0.0170 0.43 0.90

Real Images
Source class 38.78 0.0192 0.13 1
Target class 23.11 0.0002 0.87 1

5.6. Additional Qualitative Results on Brain MR
Generation

Longitudinal data on Brain MR has been used for the evalu-
ation of counterfactual image generation [14], and we used
two datasets of Brain MR [11, 17] for the task of counter-
factual image generation. In Fig. 19, it is observed that
fine-tuning of Stable Diffusion [15] leads to images that
contain diverse shapes, which evidently cannot be consid-
ered as brain MR images; on the other hand, in Fig. 20,
by additional conditioning with LD, the same pre-trained
model can be fine-tuned with similar steps of training to
generate images that follow the general pattern of the brain.
The fidelity of the images to the class they are conditioned
on (Alzheimer vs. Healthy) is evaluated by a pre-trained
classifier. However, even visually, the results have a dras-
tic improvement in contrast to Fig. 19. In Fig. 21, we com-
pare how LD can introduce Alzheimer’s disease to a healthy
brain. It can be seen that most of the brain remained intact,
and only parts of the brain have deteriorated. In Fig. 22,
we prompt the model to generate healthy brain images from
developed cases of Alzheimer’s disease, and with LD, the
model is able to grow certain areas of the brain while pre-
serving the general structure of the input brain images. In
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Figure 16. Comparison of generated images with and without LD
during fine-tuning on CheXpert [7] dataset . Examples generated
using Textual Inversion [6]. From left to right: With LD, Without
LD, Real Chest X-ray.

Figs. 21 and 22, we also compare Latent Drifting to Causal-
Gen [14] and StarGAN v2 [4]. As it can be seen in the dif-
ference, Latent Drifting preservers the bony structure while
generating deteriorated ventricles in the brain, which cor-



(a) Cardiomegaly: Enlargement of the heart

(b) Pleural Effusion: fluid buildup, blurring on the lower part

(c) Pneumonia: infection, appear as hazy area of white or gray

(d) No Finding

Figure 17. Chest X-ray generated images conditioned on the label using Textual Inversion [6] with LD.

respond to Alzheimer’s disease, while on the other hand,
Causal-Gen also affects the bony structure of the brain.
Compared to the latter, StarGAN v2 generates the least
amount of difference between the source and the counter-
factual. Furthermore, we present the image synthesis results
using LD for the MCI (Mild cognitive impairment) class in
Fig. 18.

5.7. Additional Qualitative Results on Brain Aging
Fig. 23 shows additional results on brain aging using the In-
structPix2Pix [1] model fine-tuned with LD. In this experi-
ment, we condition the model on the source brain MR and

the target age, as explained in the main paper. The gener-
ated image with LD should correspond to the target image,
which is the correct counterfactual image as a result of brain
aging. As can be seen in the results, the brain MR images
generated by LD are visually similar to the target brain MR
and show minor deterioration of the brain matter.

6. Discussions

Ethical Considerations Following a Human Subjects Re-
search (HSR) Determination and utilizing publicly de-
identified data, we sought approval from a reputable Ethics
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Figure 18. Randomly sampled real and generated data for Brain MR, MCI class

Observation: Alzheimer’s Disease

Observation: Cognitively Normal

Figure 19. Brain MRI slice generation using SD + Basic FT without LD.

Review Board (ERB). Note that our synthetic counterfac-
tual data were exclusively employed for training other mod-
els, with subsequent rigorous evaluation using real data, en-
suring sufficient representation of under-represented condi-
tions, particularly during testing. Despite this, we empha-
size the need for transparency during model deployment by
explicitly stating that the models were trained on synthetic

data.

Broad Impacts Our Latent Drift (LD) method can impact
the field of medical imaging by generating high-quality
synthetic images where real data is limited. It overcomes
the need for extensive datasets, addresses fine-tuning chal-
lenges in pre-trained models, and supports creating realis-



Observation: Alzheimer’s Disease

Observation: Cognitively Normal

Figure 20. Brain MRI slice generation using SD + Basic FT with LD.

tic counterfactual images. The ability to produce realistic
counterfactual images based on text and image conditions
while maintaining fidelity is crucial for simulating patient-
specific scenarios and contributes to the development of per-
sonalized treatment strategies, as evidenced by improved
classifier performance on real datasets and evaluations on
diverse medical benchmarks.

Limitations Evaluating the authenticity of synthetic medi-
cal images is complex and typically necessitates expert re-
view, which is impractical for large datasets and large-scale
training. Our study utilized a classifier to screen the ex-
tensive data, recognizing that traditional clinical validation
methods are unfeasible. Although the AUC was reported
for classifiers trained on synthetic images and tested on real
data, these metrics may not be adequate for clinical utility.
Therefore, there is a pressing need for innovative metrics
capable of assessing the authenticity of counterfactual med-
ical images without the need for heavy expert involvement
to confirm their clinical value.



P2P-Z [13] + LD (Ours) Causal-Gen [14] StarGAN-v2 [4]
Original (CN) cf (AD) Diff cf (AD) Diff cf (AD) Diff

Figure 21. Comparison of counterfactual MR slice generation from healthy to Alzheimer’s Disease using Pix2Pix Zero + LD to Causal-Gen
[14] and StarGAN-v2 [4]. : Removal, : Addition. P2P-Z stands for Pix2Pix Zero.



P2P-Z [13] + LD (Ours) Causal-Gen [14] StarGAN-v2[4]
Original (AD) cf (CN) Diff cf (CN) Diff cf (CN) Diff

Figure 22. Comparison of counterfactual MR slice generation from Alzheimer’s Disease to healthy using Pix2Pix Zero + LD to Causal-Gen
[14] and StarGAN-v2 [4]. : Removal, : Addition. P2P-Z stands for Pix2Pix Zero.



Source Target LD (Ours) Diff (Target, cf LD) Diff (Source, cf LD) Diff (Source, Target)

Figure 23. Counterfactual Image Generation for Brain Aging using InstructPix2Pix [1] + LD. Diff(a, b) = b−a. : Removal, : Addition.
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