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A.1. HCP Parcellation Map

Figure S1. HCP Parcellation Map. The human cortex parceled into regions of interest as defined by the HCP-MMP [1] atlas and
HCPex [2]. Regions were defined through multimodal imaging and take into account neural structure, connectivity, and task-related
selectivity. This figure is a reproduction of a subset of Figure 1 from Rolls et al. [3].

A.2. Additional Dataset Information

We use the Dynamic Vision Dataset collected by Wen et al. [4]. The dataset is released under a CC0 1.0 universal license
and can be found at https://purr.purdue.edu/publications/2805/1.
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A.3. Decoding Models: Visualizations
Attached is an HTML file, index.html, showing multiple reanimation examples as videos. To view the HTML file,
open it in a browser. For each example, we show the ground truth video, the reanimated video using the flow predicted
from the ground truth initial frame, and the reanimated video using the flow predicted from the initial frame generated by
MindVideo [5]. The MindVideo initial frame represents the diffusion image as predicted by MindVideo from fMRI data. As
such, this frame is often quite different in content from the ground truth, although the objects in each are in similar locations.
However, the motion predicted by our model is still consistent with ground truth motion, for example, in the first video the
jellyfish retracts backwards at the end clip. The same backwards motion can be seen in the reanimated videos for with both
the ground truth initial frame and the MindVideo generated initial frame (which happens to be a boat). This establishes
that the motion visualized using DragNUWA [6] is not derived solely from the diffusion model, but rather, incorporates our
predicted motion.

In addition, we display example generated video frames below. Within each figure the first row is the ground truth frame,
the second row is our reanimated video using the flow predicted from the ground truth initial frame, and the final row is the
reanimated video using the flow predicted from the initial frame generated by MindVideo.
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Figure S2. Static image animation results. Here we see an example of deer running to the right in the ground truth video (first row,
“GT”). We show an example of animating the initial frame of the ground truth video by combining the brain conditioned motion prediction
with DragNUWA [6] (second row, “Ours + GT”). We show an example of animating the initial frame obtained from fMRI data using
MindVideo by combining the brain conditioned motion prediction with DragNUWA (third row, “Ours + MindVideo”) and observe that
the creatures run to the right.

GT
Ou

rs
 +

 G
T

Ou
rs

 +
M

in
dV

id
eo

Figure S3. Static image animation results. Here we see an example of a soldier running to the left in the ground truth video (first row,
“GT”). We show an example of animating the initial frame of the ground truth video by combining the brain conditioned motion prediction
with DragNUWA [6] (second row, “Ours + GT”). We show an example of animating the initial frame obtained from fMRI data using
MindVideo by combining the brain conditioned motion prediction with DragNUWA (third row, “Ours + MindVideo”) and observe that
the child pedals its feet in a similar motion to that of the soldier running.
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A.4. Encoding Models: Controls and Baselines
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(a) Image Models
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(b) Video Models
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(c) Embodied AI Models

Figure S4. Model size and encoding prediction performance. Encoding model features of the viewed stimuli are used to predict voxel-
wise fMRI brain activity [7]. The average Pearson-r is plotted across all voxels for each model and with respect to the number of parameters
in each model. (a) Encoding performance for models trained on static images. (b) Encoding performance for models trained on videos. (c)
Encoding performance for models trained to align representations of single frames across time for embodied AI visuomotor manipulation.
Model size and encoding prediction performance are not significantly correlated (by statistical test) for image and video models. This
indicates that the model size is not a confound for the encoding performance of image and video models. In contrast, model size and
encoding performance are significantly correlated (p < 0.001) for the embodied AI visual models. Encoding performance per model is
plotted for each of the three participants – the circle marker refers to S1, the triangle marker refers to S2, and the square marker refers to
S3. Comparisons between models and model sizes are a critical step in building better and more interpretable models for understanding
the human brain. Model architectures and training tasks, as well as the number of parameters and other model characteristics, instantiate
varying constraints that have functional implications for brain prediction [8, 9].
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(a) Image Models
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(b) Video Models
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(c) Embodied AI Models

Figure S5. Training data size and encoding prediction performance. Encoding model features of the viewed stimuli are used to predict
voxel-wise fMRI brain activity [7]. The average Pearson-r is plotted across all voxels for each model and with respect to the number of
samples each model is trained on. (a) Encoding performance for models trained on static images. (b) Encoding performance for models
trained on videos. (c) Encoding performance for models trained to align representations of single frames across time for embodied AI
visuomotor manipulation. Training data size and encoding prediction performance are not significantly correlated (by statistical test) for
image and video models. This indicates that the training data size size is not a confound for the encoding performance of image and video
models. In contrast, model size and encoding performance are significantly correlated (p < 0.001) for the embodied AI visual models.
Encoding performance per model is plotted for each of the three participants – the circle marker refers to S1, the triangle marker refers to
S2, and the square marker refers to S3.
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VideoMAE Models (Pearson r)
Model Dataset Encoding Performance
VideoMAE Base K-400 0.2964
VideoMAE Large K-400 0.3248
VideoMAE Base SSV2 0.3137

Table S1. Control for dataset distribution: encoding perfor-
mance of VideoMAE. VideoMAE trained on SSV2 predicts
fMRI brain activity at the same level as VideoMAE trained
on Kinetics-400. All three VideoMAE models are better at
predicting fMRI brain activity as compared to all other tested
models as listed in Figure 7 in the main text. This com-
bined with the results in Figure S4 indicates that model size
and training data size are unlikely potential confounding fac-
tors. These results suggest that the architecture and training
paradigm of VideoMAE lead to better fMRI brain activity pre-
diction.

Hiera Models (Pearson r)
Model Dataset Encoding Performance
Hiera Base Plus K-400 0.2629
Hiera Base Plus IN-1K 0.2198
Hiera Huge K-400 0.2532
Hiera Huge IN-1K 0.2407

Table S2. Control for dataset distribution: encoding per-
formance of Hiera. Hiera models of the same size trained on
Kinetics-400 (K-400) are better at predicting fMRI brain activ-
ity as compared to Hiera models trained on Imagenet-1K (IN-
1K). This result supports the claim that fMRI brain activations
encode dynamic visual representations, as modeling temporal
dynamics improves fMRI brain activity prediction when archi-
tecture is held constant.
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A.5. Encoding Models: Voxel-wise Prediction Performance on Inflated Cortical Maps of the Brain
Inflated brain maps showing voxel-wise fMRI prediction performance, quantified as the Pearson correlation (r) between
measured and predicted responses, for all visual encoding models not shown in the main text. Maps for each model are
shown in alphabetical order. ‘AF’ in the model name denotes a model using Average Frames. All maps are shown using the
same scale for ease of comparison between models.
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Figure S6. CLIP Voxel-wise Prediction Performance. Voxel-wise fMRI encoding accuracy of CLIP quantified as the Pearson correlation
between measured and predicted responses. Refer to Figure S1 for a labeled parcellation of the human cortex.
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Figure S7. CLIP AF Voxel-wise Prediction Performance. Voxel-wise fMRI encoding accuracy of CLIP AF quantified as the Pearson
correlation between measured and predicted responses. Refer to Figure S1 for a labeled parcellation of the human cortex.
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Figure S8. CLIP ConvNeXt Voxel-wise Prediction Performance. Voxel-wise fMRI encoding accuracy of CLIP ConvNeXt quantified as
the Pearson correlation between measured and predicted responses. Refer to Figure S1 for a labeled parcellation of the human cortex.
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Figure S9. CLIP ConvNeXt AF Voxel-wise Prediction Performance. Voxel-wise fMRI encoding accuracy of CLIP ConvNeXt AF
quantified as the Pearson correlation between measured and predicted responses. Refer to Figure S1 for a labeled parcellation of the human
cortex.
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Figure S10. DINOv1 Voxel-wise Prediction Performance. Voxel-wise fMRI encoding accuracy of DINOv1 quantified as the Pearson
correlation between measured and predicted responses. Refer to Figure S1 for a labeled parcellation of the human cortex.

9



CVPR
#16804

CVPR
#16804

CVPR 2025 Submission #16804. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Subject 1
Lateral 
View

Posterior 
View

Medial 
View

Left 
Hemisphere

Subject 2

Subject 3

Figure S11. DINOv2 Voxel-wise Prediction Performance. Voxel-wise fMRI encoding accuracy of DINOv2 quantified as the Pearson
correlation between measured and predicted responses. Refer to Figure S1 for a labeled parcellation of the human cortex.
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Figure S12. Hiera Base Plus Voxel-wise Prediction Performance. Voxel-wise fMRI encoding accuracy of Hiera Base Plus quantified as
the Pearson correlation between measured and predicted responses. Refer to Figure S1 for a labeled parcellation of the human cortex.
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Figure S13. Hiera Huge Voxel-wise Prediction Performance. Voxel-wise fMRI encoding accuracy of Hiera Huge quantified as the
Pearson correlation between measured and predicted responses. Refer to Figure S1 for a labeled parcellation of the human cortex.
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Figure S14. R3M Voxel-wise Prediction Performance. Voxel-wise fMRI encoding accuracy of R3M quantified as the Pearson correlation
between measured and predicted responses. Refer to Figure S1 for a labeled parcellation of the human cortex.

11



CVPR
#16804

CVPR
#16804

CVPR 2025 Submission #16804. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Subject 1

Lateral 
View

Left 
Hemisphere

Right 
Hemisphere

Posterior 
View

Medial 
View

Subject 2

Subject 3

Figure S15. R3M AF Voxel-wise Prediction Performance. Voxel-wise fMRI encoding accuracy of R3M AF quantified as the Pearson
correlation between measured and predicted responses. Refer to Figure S1 for a labeled parcellation of the human cortex.
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Figure S16. ResNet50 Voxel-wise Prediction Performance. Voxel-wise fMRI encoding accuracy of ResNet50 quantified as the Pearson
correlation between measured and predicted responses. Refer to Figure S1 for a labeled parcellation of the human cortex.
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Figure S17. VC1 Voxel-wise Prediction Performance. Voxel-wise fMRI encoding accuracy of VC1 quantified as the Pearson correlation
between measured and predicted responses. Refer to Figure S1 for a labeled parcellation of the human cortex.
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Figure S18. VC1 AF Voxel-wise Prediction Performance. Voxel-wise fMRI encoding accuracy of VC1 AF quantified as the Pearson
correlation between measured and predicted responses. Refer to Figure S1 for a labeled parcellation of the human cortex.
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Figure S19. VideoMAE Voxel-wise Prediction Performance. Voxel-wise fMRI encoding accuracy of VideoMAE quantified as the
Pearson correlation between measured and predicted responses. Refer to Figure S1 for a labeled parcellation of the human cortex.
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Figure S20. VIP Voxel-wise Prediction Performance. Voxel-wise fMRI encoding accuracy of VIP quantified as the Pearson correlation
between measured and predicted responses. Refer to Figure S1 for a labeled parcellation of the human cortex.
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Figure S21. VIP AF Voxel-wise Prediction Performance. Voxel-wise fMRI encoding accuracy of VIP AF quantified as the Pearson
correlation between measured and predicted responses. Refer to Figure S1 for a labeled parcellation of the human cortex.
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Figure S22. XCLIP Voxel-wise Prediction Performance. Voxel-wise fMRI encoding accuracy of XCLIP quantified as the Pearson
correlation between measured and predicted responses. Refer to Figure S1 for a labeled parcellation of the human cortex.
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