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Figure 1. Examples of our DL2G for eyeglass reflection removal. The top row shows some cases with different reflection intensities,
colors, and shapes. The bottom row presents our results. (a), (b) are captured in the lab with controlled lighting conditions. (c) and (d) are
captured in the outdoor environment with uncontrolled lighting conditions. (c), (d), (e) and (f) are collected from the Internet.

Abstract

Eyeglass reflection removal can restore the texture informa-
tion in the reflection destructed eye area, which is meaning-
ful for various tasks on the facial images. It is still challeng-
ing to correctly eliminate reflections, reasonably restore the
lost contents, and guarantee that the final result has a con-
sistent color and illumination with the input image. In this
paper, we introduce a Degradation-guided Local-to-Global
(DL2G) restoration framework to address this problem. We
first propose a multiplicative reflection degradation model,
which is used to alleviate reflection degradation to obtain
a preliminary result. Then, in the local details restoration
stage, we propose a local structure-aware diffusion model
to learn the true distribution of texture details in the eye
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area. This helps in recovering lost contents in the regions of
heavy degradation where the background is invisible. Fi-
nally, in the global consistency refinement stage, we uti-
lize the input image as a reference image to generate the
final result that is consistent with the input image in color
and illumination. Extensive experiments demonstrate that
our method can improve the effect of reflection removal and
generate results with more reasonable semantics, exquisite
details, and harmonious illumination.

1. Introduction

Reflection is a common optical phenomenon observed in
natural scenes. For portrait images with eyeglasses, reflec-
tions on the eyeglasses often obscure the texture detail of
the eyes, even resulting in the lost of content information.
Therefore, removing reflections can improve the quality and



visibility of the eyes in the image [26]. This is of great im-
portance for visual tasks related to facial image such as fa-
cial recognition [22] and facial landmark detection [4].

Different light sources and lens materials will cause the
reflection in the real world to show different intensities,
shapes, and colors, as shown in Fig. 1. Under indoor con-
ditions, eyeglass reflections are mainly caused by artificial
light sources and usually appear as simple geometric shapes
with a single color. Under outdoor conditions, eyeglass re-
flections are mainly caused by natural light, with more com-
plex shapes and more diverse colors. In addition, weak re-
flection often results in a change in color and brightness in-
formation. However, strong reflection can cause the loss of
texture information (as shown in Fig. 1 (b)). Thus, it is still
a great challenge to correctly remove reflections, reasonably
restore the lost contents, and ensure that the generated result
has consistent color and illumination with the input image.

In recent years, with the emergence of large-scale reflec-
tion datasets [7, 8, 16, 37, 39], many deep learning-based
methods have been proposed to remove reflections in both
natural scene [11-13, 16, 24, 30, 31, 33, 37] images and
eyeglass images [12]. However, these methods struggle to
restore local details of the eyes without introducing artifacts
and generalize to reflections with different intensities, due
to the lack of specific degradation prior to guide the learning
process and attention to local structures of the eyes.

Existing degradation prior-guided reflection removal
studies focus on separating the reflection layer from the im-
ages taken through glass. They consider the degraded image
as a blend of the background scene behind the glass and the
reflection scene in front of the glass. Consequently, existing
methods model the degraded image as a linear [15, 27, 33]
or non-linear combination [5] of a reflection image and a
transmission image (background image). However, they
can not model the eyeglass reflection degradation problem
appropriately. Since eyeglass reflections usually only de-
grade a very small portion of the image, the degraded region
can only present local information of the reflection scene in
front of the eyeglass. It is challenging and unnecessary to
use this local information to estimate the reflection layer.
More importantly, separating the reflective layer from the
degraded image is not helpful for restoring the lost content
information in the strong reflection areas.

Addressing these problems, we construct a Degradation-
guided Local-to-Global restoration framework (DL2G) for
eyeglass reflection removal (ERR). First, we consider that
the eyeglass reflection image is formed by applying an il-
lumination and color change surface (degradation map) to
the background image, and propose a multiplicative degra-
dation model. Accordingly, we train a simple degradation
estimation module (DEM) to estimate the degradation map
to alleviate the degradation preliminarily. Then, we pro-
pose a two-stage network to recover lost information and

enhance illumination consistency in a local-to-stage man-
ner. Considering that the degradation model is not effective
for content restoration in strong reflective regions, we intro-
duce the local sampling scheme to a conditional diffusion
model to enhance the model’s ability to discern and inter-
pret the local structures of eyes. This is helpful for recover-
ing local contents without introducing artifacts. Finally, we
present the global consistency refinement module to incor-
porate the features of non-eyeglass areas in the input image
into the final result, so as to ensure the illumination consis-
tency with the input image. Extensive experimental results
on the images captured in the illumination-controlled en-
vironment and in the wild all demonstrate that our method
can generate reflection-free results with reasonable seman-
tics, exquisite details, and harmonious illumination.

In summary, our main contributions are as follows.

(1) We propose a multiplicative degradation prior model
specific to the ERR problem to alleviate the reflection
degradation to get a preliminary result.

(2) To restore lost information in areas with high degra-
dation, we train a local structure-aware diffusion model
(LSDM) by introducing the local structure sampling strat-
egy for discerning and interpreting local structures. We also
propose to incorporate the features of non-eyeglass areas in
the input image into the final result to ensure global illumi-
nation consistency.

(3) We provide 2,000 pairs of images with more complex
reflections as a complement to ReyeR [39], and construct
the ReyeR+ dataset. Results on ReyeR+ and other images
captured in the wild demonstrate the effectiveness and gen-
eralization of our method.

2. Related Work

Reflection Degradation Prior Model. Several natural
scene reflection removal studies have proposed reflection
degradation prior to separate the reflection scene (reflection
image) from the background scene (transmission image).
Levin et al. [15] proposed that the degraded image can be
decomposed as a reflection image and a transmission im-
age. Some approaches [27, 33] further introduced scalars
to combine the two components to obtain a more flexible
form. Since simple combinations often fail in situations like
overexposure [31], [5] introduced an alpha-matting matrix
in reflection models. Hu et al. [11] proposed a more generic
reflection model by introducing a residual term as a non-
linear combination of the reflection image and the transmis-
sion image. However, it is difficult to separate the reflection
scene from the small area of the degradation image on the
eyeglass. Besides, the background and reflection are highly
mixed, the reflection component dominates the mixture im-
age, and the background is almost invisible, which increases
the restoration of background image further.

Learning-based Reflection Removal Methods. Recent
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Figure 2. Framework fo our DL2G. Given the input image I, the degradation estimation module (DEM) estimates the degradation map D,
obtaining the preliminary result 7" according to the proposed degradation model. Then, we use 1" as condition to train a local structure-
aware diffusion model (LSDM) to restore the lost contents and outputs the result 7y. Finally, the global consistency refinement (GCR)
module incorporates the non-eye features of I into the final result 7' to achieve illumination consistency with the input image.

methods mainly adopt deep learning to solve this problem
[1-3, 5,6, 11, 13, 18, 20, 24, 29]. Li et al. [16] employed
LSTM for iterative refinement of the reflection removal re-
sults. Kim et al. [13] proposed to transform the reflection
images back to their initial states to separate the reflection
layer and the transmission layer. Hu ef al. [11] employed
residual term learning to guide reflection separation. Watan-
abe et al. [29] utilized autoencoder and U-Net architecture
for ERR. These methods focus on separating the reflection
from the degradation image, neglecting the restoration of
lost contents in strong reflection regions. Zou et al. [39]
proposed learning to eliminate weak reflection and restore
lost contents jointly. However, the model is not robust to
complex reflections, since it cannot learn the true distribu-
tion of local details of eyes.

Diffusion Model for Image Restoration. In recent years,
diffusion models have achieved excellent results in many
vision tasks, such as inpainting [19], portrait highlight re-
moval [38], shadow removal [9], foreground relighting [35],
and human reconstruction [17]. Guo et al. [9] proposed
to embed the degradation prior into the diffusion sampling
procedure for shadow removal. Yi ef al. [34] proposed to
formulate the low-light enhancement task as a paradigm of
decomposition and image generation based on the Retinex
theory. However, these methods mainly use the diffusion
model to restore the images globally. Unlike them, we train
a details-aware diffusion model to focus on the local con-
tents restoration.

3. Method

Fig.2 illustrates the overview of our DL2G framework.
Given an input image [ and its corresponding ground-truth
image 7', we first pre-train a simple U-Net to estimate the
degradation map D, which is then used to obtain the initial
result 7" with the proposed degradation prior model. Then,
in the local detail restoration stage, we use 1" as condition
to train a local structure-aware diffusion model (LSDM) to
generate the contents restored result 7y with the local sam-
pling technique. This benefits to enhance the model’s ability
to discern and interpret the local structures of eyes. Finally,
the global consistency refinement (GCR) module takes T}
and [ as inputs, and fuses the features of eye in Ty and the
features of non-eye in I to generate the illumination consis-
tent result 7".

3.1. Degradation-guided Reflection Alleviation

Given the reflection-degraded image I, many models have
been proposed to model the physical mechanism of reflec-
tion formation. Hu ef al. proposed the general form, and
most of existing models can be seen as a special case of it:

I=T+R+®T,R) )

where 71" and R are transmission and reflection layer, re-
spectively, and ®(7, R) can model the residue in a group
of specific situations. However, this additive mixing model
cannot model the ERR problem appropriately. As we ana-
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lyzed above, the localized eyeglass reflection makes it hard
to separate the reflection scene from the background image.

Multiplicative reflection degradation model. In this
paper, inspired by the Retinex theory [14], we consider that
the eyeglass reflection image is formed by applying an illu-
mination and color change surface (degradation map) D to
the transmission image 7" as follows:

I=ToD, )

where “o” denotes the element-wise multiplication. With
this prior, we can model reflections with change intensity
and color. To estimate the degradation map D, we use the
simple U-Net to train the Degradation Estimation Module
(DEM) with the ground truth Dy = %ﬂ’ where 7 is a
decimal used to prevent division by zero (n = 1 x e~ % in
this paper). The training loss for the degradation map is:

Lp=| D - Dr ||, 3)

where “|| - || " denotes the Frobenious-norm.

We compare different reflection degradation models by
visualizing the reflection image R and our degradation map
in Fig. 3. It can be seen that the additive degradation priors
cannot model the eyeglass reflection well, and our multi-
plicative model can accurately estimate the degraded map.

According to Eq. (2), we can obtain the initial result of
the reflection removal 7" by the inverse operation:

T=1/(D+n) “

where “./” denotes the element-wise division. We also re-
port the initial result T in Fig. 4 to show the effect of the
degradation model. It can be seen that our model is effective
in the weak reflection regions (as seen in Fig. 4(c)). As for
the strong reflection regions shown in Fig. 4(f), the degrada-
tion model can only eliminate the reflections to a certain ex-
tent but cannot restore the lost information. Therefore, this

®
Figure 3. Comparison with different reflection degradation mod-
els. (a) I, (b) R =1 —T, (c) RinIBCLN [16], (d) R in the

DSRNet [11], (¢) R + ®(T, R) in the DSRNet [11], (f) D in our
reflection degradation model.

stage allows us to remove weak degradation, since it cannot
restore the heavy degradation regions where the background
is almost invisible.
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Figure 4. The degradation-guided elimination stage can remove
weak reflection ((a) and (c)), but cannot restore the lost content in
strong reflection image ((d) and (f)).

3.2. Local Detail Restoration Stage

After the degradation-guided reflection alleviation, we need
to restore the lost texture in the strong reflection regions.
In this regard, we can learn the latent distribution of eyes
with a conditional diffusion-based [23] model. It learns a
conditional reverse process pg(To.x|T):

K

p(Tx) [] po(Tia | T ), (5)
k=1

po(To:xc|T) =

such that the sampled image has high fidelity to the distri-
bution of 7" conditioned on the given initial result 7". This
can be trained by introducing noise to the reflection-free
image Ty, transitioning it to a noisy state 7} over k steps
through Ty, = a,To + /1 — age, where a, = 1 — S,
ar = [1'_, @i and € ~ N(0,T) (Lis the identity matrix).
The denoiser €y is used to predict the noise map ey, as fol-

lows:
ekzﬁe(v@kTo"‘ Vl_&kﬁvTvk)' (6)

Then, the denoiser can be trained to predict the noise € and
restore the image via the following loss:

L=FEq kel er—elf- (7

However, we found that directly training such a model
did not result in accurate restoration images. Instead, the
model produces images with some artifacts in the strong re-
flection regions. We speculate that this discrepancy arises
because eyeglass reflection usually only occupies a very
small part of the whole facial image, and using the whole
facial image as a condition to guide the training of diffusion
model cannot make the model focus on the local structure.

To enable the diffusion model to be aware of local struc-
tures, we propose the local structure-aware diffusion model
(LSDM) by introducing the local structure sampling strat-
egy. Specifically, we employ a sliding window of size
p % p with stride s x s to segment the reflection-free image
To € REXWX3 and the corresponding conditional image
T € REXWx3 into D patches, denoted as T,Ed) € Rpxpx3

and T € RPXPX3 where d = 1,2,---,D, p = 64,



Algorithm 1 Local structure-aware diffusion training.

Algorithm 2 Inference procedure of LSDM.

Input: Initial eyeglass reflection result T, reflection-free
image Ty, dictionary of D with overlapping patch lo-
cations.

1: while not converged do

2:  k ~ Uniform{1,--- , K}

3 e~N(0,I)

4 ford e [1,D]do

5 Téd) = Crop(Py o Tp), T@ = Crop(Py o T),
and €9 = Crop(P; o €) (P, is the mask of the
dyp, patch in the image.)
e\ = eo(VarT,® + T = are®, T@ k)

7: Perform gradient decent steps on Vg Lg; ¢ ¢

8: end for

9: end while

10: return ¢y

>

s = 16, and T,gd) is the reflection-free image with Gaus-
sian noise €y, in timestep k. Then, the learned conditional
reverse process in Eq. (5) can be defined as:

K
d) \ 7 D od) =
po(To )T D) = p(T) T po(T 2T, TD). (8)
k=1

The denoiser in Eq. (6) and the loss function in Eq. (7) can
be rewritten as:

er! = eo(VarTy" + VT —are® T k), (9)

d d
Laisr =Epw o e =67 5. (10

The training procedure for our local structure-aware dif-
fusion model is presented in Algorithm 1.

In the reverse procedure, as presented in Algorithm 2,
we process the overlapped regions at every timestep k to
ensure a uniform effect across the overlapped areas when
reconstructing the whole image. This prevents the forma-
tion of merging artifacts that typically occur when patches
are processed independently. With the local structure-aware
diffusion model, we can obtain a seamless and artifact-free
restoration image.

3.3. Global Consistency Refinement Stage

The result Tj obtained by the LSDM is more refined in de-
tail but sometimes exists illumination deviations from the
input image, therefore, we further design a global consis-
tency refine (GCR) module to refine the illumination with
the help of reference image I. Then we can get the final
result 7" harmonious with the input image. The GCR mod-
ule consists of two convolutional blocks for image feature
extraction, two transformer blocks [25] for feature fusion,
and a deconvolutional block for image generation.

Input: Initial eyeglass reflection result T, diffusion model
€p, dictionary of D overlapping patch locations.
1: Tk ~ Uniform{1,--- K}
2: fork=K,...,1do
33 Qp=0and M =0

4: ford e [1,D]do

5 T,Ed) = Crop(PyoTy), T = Crop(PyoT)

6: Q. =Qr+ Pyo Eg(Tlid), T(d), k‘)

7 M =M+ Py

8 end for

9: Qp = Qk/M

10: Th_1 = i(Tk — \}%&Qk) + V1 —arep (€ ~
N(0,1))

11: end for

12: return T

Specifically, the GCR module takes Tj and the image [
as input, and performs feature extraction to get the feature
maps F'Ty and F'I through a convolutional block. Then,
we can obtain the feature in and out-side the eye area of
these two images, i.e., FT§, (FT°, and FI"°), respec-
tively, through the following operations:

FT§ = Flatten(FTy o M),
FT3¢ = Flatten(FTg o (1 — M))), (1D
FI™ = Flatten(I o (1 — M))),

where M represents the eye area mask, which can be ob-
tain by a glass detector'. We first use F'T§ as query and
FT3¢ as key and value to enhance the feature of eyes with
the global features of Ty. Then, we can get the enhanced
eye feature eF'T(§. After that, we further use e /"I as query
and the non-eye area features F'I™° as key and value, and
feed them to the transformer block for feature fusion, so that
the illumination and tone are as consistent as possible with
the input image I. Finally, we combine the enhanced re-
sult e2 FT¢ with the non-eye area content F'I,,. of the input
image to obtain the final optimized result T.

In the global consistency refine stage, we use the least
square loss for training the GCR module:

Ly=|T-1|. (12)

4. Experiments

4.1. Implementation Details

Our network is implemented in PyTorch on a NVIDIA
GeForce 3090 card. We train the proposed modules sep-
arately. The training epoches of all three modules are

Uhttps://github.com/mantasu/glasses-detector
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Figure 5. Qualitative comparison results on ReyeR+, the first two rows are from ReyeR, and the last two rows are our supplemented images.
(a) Input image, (b) GT, (c) Ours, (d) Watanabe et al. [29], (e) IBCLN [16], (f) Robust SIRR [24], (g) DSRNet [11], (h) ER2Net [39].

set as 2000. We use Adam optimizer with momentum as
(0.9,0.999) to optimize the DEM, LSDM, and GCR mod-
ules, and set the initial learning rate to 3 X 10~°. For
the DEM, the recent transformer image-to-image backbone
[28]. For the LSDM, we use the similar U-Net architecture
as the denoiser €y of [21], and initialize the weights of our
model with the Kaiming initialization technique [10]. The
noise schedule S increases linearly from 0.0001 to 0.02.
The diffusion step K is set as 1000 for training and 100
for inference. For the GCR module, we use the transformer
blocks in [25] for feature fusion. All input images are re-
sized to 256 x 256.

4.2. Comparison Results on ReyeR+

Dataset. The ReyeR dataset contains 12,328 pairs of high-
quality eyeglass reflection images with 11,046 training pairs
and 1,282 testing pairs. The images were captured with var-
ious materials of eyeglasses, different lighting sources, and
different reflection intensities. However, the degradation
levels of these images are relatively simple, e.g., small areas
and regularly shaped. In this work, we use the same collect-
ing scheme as that in [39] to supplement ReyeR with 2,000
pairs of images, and the new dataset is denoted as ReyeR+
(details can be seen in Table 1). We mainly collect some re-
flection images with complex foreground scenes and reflec-
tion source, in most of which the eyes are completely invis-
ible. The supplemented images are more closely resemble
the real-world scenarios of complex reflections under nat-

ural indoor/outdoor lighting conditions, thereby presenting
greater challenges.

Table 1. Details comparison of ReyeR and ReyeR+.

Dataset Participants Light sources Eyes invisible(%) Complex foreground(%) training set
ReyeR 356 5 12.13 2.01 11,046
ReyeR+ 400 20 33.24 10.14 11,846

Metrics. For the labeled ReyeR+, we calculate PSNR,
SSIM and LPIPS [36] on the RGB space for evaluation,
and for unlabeled images in the wild, qualitative compar-
isons are provided for visual observation.

Table 2. Quantitative comparison results on the ReyeR+ dataset.
The best results are in bold, and the second-best results are in
underlined.

Methods

Watanabe et al. [29]
ER?Net [39]

PSNRt SSIM{T LPIPS)

31.514  0.857 0.130
34.301  0.935 0.050

IBCLN [16] 32471  0.882 0.085
Robust SIRR [24] 32761 0917 0.073
DSRNet [11] 33.555 0.933 0.046
TSHRNet [8] 20.257  0.879 0.136
Ours 34.801  0.947 0.040

We compare our method with two eyeglass reflection re-
moval method Watanabe ef al. [29] and ER?Net [39], three
advanced image reflection removal methods IBCLN [16],
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Figure 6. Results on images in the wild. (a) Input image, (b) Ours,
(C) IBCLN, (d) DSRNet, (e) Robust SIRR, (f) ER®Net.

DSRNet [1 1] and Robust SIRR [24], and an advanced spec-
ular highlight removal method TSHRNet [8]. We train these
networks on ReyeR+ dataset with the optimal settings as
mentioned in the original published paper. The quantita-
tive comparison results are reported in Table 2. As we can
see, our method performs the best on all the three metrics.
Fig. 5 shows the qualitative comparison results on images
with different reflection intensities, shapes, and colors. For
the Watanabe et al. [29], IBCLN [16], Robust SIRR [24],
DSRNet [11] and ER?Net [39], in the case of reflections
with single shape and color, as shown in the first 4 columns
of Fig. 5, these methods can remove reflections. However,
in the strong reflection regions, the contents recovered by
these methods are not detailed enough, and there are distor-
tions and background fading. For reflections with complex
patterns, as shown in the last two columns of Fig.5, these
methods are difficult to completely remove reflections and
restore the contents.

More Results on Images in the Wild. To further verify
the robustness and generalization ability of our method, we
test our method on some images in the wild. The visual-
ization results are presented in Fig, 6. It can be seen that
our method can recover the background image with reason-
able details (see the red box in the first row) and consis-
tent illumination (see the red box in the second row), which
demonstrates the effectiveness of our method on the images
captured in the environment with uncontrolled lighting con-
ditions. More results on the images in the wild can be seen
in Fig. 1, and more comparisons on these images are pre-
sented in the Supplementary Material.

4.3. Results on Specular Highlight Images

Since the eyeglass reflections is similar to specular high-
lights, we generalize our method to specular highlight re-
moval task. We compare our method with three SOTA
specular highlight removal methods, TSHRNet [8], JSHDR
[7], and SpecularityNet [32]. Table 3 and Fig. 7 show the
qualitative and quantitative comparison results on specular
highlight dataset SHIQ [7], respectively. It can be seen that
our method can achieve equivalent even higher scores than

Figure 7. Comparison with specular highlight removal methods.
(a) Input; (b) GT; (c) Ours; (d) TSHRNet [8]; (e) JSHDR [7]; (f)
SpecularityNet [32].

Table 3. Quantitative comparison results on SHIQ dataset. The
best results are marked in bold, and the second-best results are in
underlined.

Metrics PSNR{  SSIM?T
Fu[7] 34131 0.860
Wu [32] 23420 0.920
Fu[8] 25.575 0.933

Ours 28.145  0.946

other current specular highlight removal methods. Even in
some results, our method is better at detail processing and
restores the lost texture on the object more delicately.

4.4. Ablation Study

We design four variants as follows to verify the effective-
ness of each module in our network: (1) only DEM: Only
using the degradation estimation model for reflection allevi-
ation to see the effectiveness of the degradation model. (2)
only LSDM: Only using the local structure-aware diffusion
model for reflection removal with 7" replaced by I to under-
stand the performance of the LSDM module. (3) DEM +
LSDM: Using the degradation-guided reflection alleviation
and the LSDM to get the final result. (4) DEM + GCR:
Using the degradation-guided reflection alleviation and the
global consistency refinement module, with T replaced by
T, to get the final result.

All the four variants are trained on the ReyeR+ dataset,
and the results are summarized in Table 4. We can observe
that all modules can improve the eyeglass reflection removal
performance, which indicates the effectiveness of our de-
sign. Fig. 8 provides a visual comparison of the ablation
variants. Fig. 8(c) shows degradation module is effective to
alleviate the degradation, but can not recover the lost con-
tents. LSDM is effective to restore the local details, but
there are still some reflection residuals (see Fig. 8(d)). The
variant DEM + GCR can not obtain the results with rea-



(a) Input (b) GT (c) Only DEM

(d) Only LSDM

() DEM + LSDM  (f) DEM + GCR  (g) Our DL2G (full)

Figure 8. Visualization of ablation study results.
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Figure 9. Failure cases. (a) Input, (b) Ours, (c) Watanabe et al. [29], (d) IBCLN [16], (e) Robust SIRR [24], (f) DSRNet [11], (g) ERZNet

[39].

Table 4. Quantitative comparison results in ablation study. The
best results are marked in bold.

Variants PSNRT SSIM{ LPIPS]
only DEM  31.633 0.894  0.128
only LSDM 33441 0932  0.051
DEM +LSDM 34754 0934  0.044
DEM + GCR 32490 0919  0.061
DL2G (ful)  34.801 0.947  0.040

sonable details (see Fig. 8(f)), and this can be improved
by replacing GCR with LSDM, but it cannot obtain the il-
lumination harmonious result (see Fig. 8(d)). Our DL2G
combines the above modules to output high quality results.

Limitations. Our method may fail on the eyeglasses not
on eyes (the top row of Fig. 9). The main reason is that
the training dataset mainly focus on restoring eyes. How-
ever, comparing with other method, our method still can
eliminate the reflections to some extent with the help of the
guidance of the degradation model. Another case is for eye-

glasses with special material (the bottom row of Fig. 9), the
main reason is that our degradation model cannot separate
the front scene from the background.

5. Conclusion

In this paper, we propose a DL2G framework for ERR.
The proposed multiplicative degradation model is effective
to alleviate the reflection, the LSDM module can learn the
true distribution of local structures of eyes for reasonable
restoration of the texture details, and the global illumination
can be adjusted by incorporating the background features of
the input image into the final result. Extensive experimen-
tal results show that our DL2G framework can significantly
improve the performance of reflection removal and reason-
ably recover the contents in the strong reflection regions.
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