Estimating Body and Hand Motion in an Ego-sensed World

Supplementary Material

A.1. Invariant Conditioning Visualization

As we observe in Table 1, naively training a model using absolute head
poses results in poor estimation performance. The absence of spatial
invariance (Invariance 1) explains this result. To visualize this, we

show in Figure A.1 two renders of the same human motion trajectory.

The second render has the same local body motion as the first, but with
the world frame re-defined:
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Figure A.1. Absolute head pose visualization for a single human
motion trajectory, before and after re-defining the world frame.

Because the world frame location is arbitrarily defined, naively
conditioning on these poses hinders generalization. Works like
EgoPoser [29] have made similar observations.

To fix this, prior works have preprocessed sequences by aligning
them to a canonical coordinate frame located at the first timestep of
each sequence [21, 48, 74]. However, we observe that this is flawed
from the perspective of temporal invariance (invariance 2). To visualize
this, we render in Figure A.2 two temporal slices of the same body
motion, with one slice starting from the beginning of the motion and
another starting from the middle:

(a) First slice

(b) Second slice

Figure A.2. Two slices of the same human motion trajectory.

Next, we consider how the head pose trajectories for each of
these slices would look if they were canonicalized by aligning the
first timestep. We visualize the resulting head pose trajectories in
Figure A.3. Circled in red are four timesteps that are shared between
the two slices. Notice that head poses from canonicalized sequences

can still differ significantly, even for the same body motion.
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(a) First slice (b) Second slice

Figure A.3. Poses canonicalized by aligning the first timestep.

To achieve both Invariances 1 and 2, EgoAllo’s invariant condition-
ing parameterization proposes an alternative way to canonicalize head
poses. Instead of defining a single canonical coordinate frame for each
temporal window, we define a canonical coordinate frame at every
timestep. The resulting representation couples relative CPF motion
AT, with per-timestep canonicalized pose Tponicat, cpr- These trans-
formations are visualized in Figure A.4. Notice that the transformations
that make up this conditioning approach are invariant both to the world
coordinate system and to choices in temporal windowing. This enables
significant improvements in estimation accuracy (Table 1).
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Figure A4. Transformations that make up the invariant
conditioning used by EgoAllo.
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A.2. Ancillary Results

A.2.1. Sequence length evaluation

At test time, EgoAllo follows MultiDiffusion [3] for extrapolating to
arbitary sequence lengths. To validate this choice, we filter out test
sequences shorter than 256 frames and then evaluate both EgoAllo and
EgoEgo [48] with subsequences of length 32, 128, and 256. We report
MPIJPE metrics on these sequences in Table A.1. Both EgoAllo and



Seqlen 32 128 256

EgoAllo 1493 1303 1279
EgoEgo 187.7 173.8 1843

Table A.1. Effect of sequence length on MPJPE (mm). EgoAllo
is trained with sequences of length 128. EgoEgo [48] is trained with
sequences of length 140.

No Hands  EgoAllo-Mono  EgoAllo-Reproj  EgoAllo-Wrist3D
119.7 91.1 78.8 63.1

Table A.2. Body MPJPEs with hand guidance. We quantify how
hand guidance impacts body MPJPE (mm).

EgoAllo EgoPoser EgoPoser w/o Normalization
119.7 1272 1274

Table A.3. MPJPE vs EgoPoser. We compare against EgoPoser both
with and without temporal normalization.

EgoEgo include windowing strategies for handling longer sequences;
unlike prior work, however, we find that accuracy improves even after
test set sequence lengths surpass the training set sequence length.

A.2.2. Body improvements from hand guidance

Incorporating hand observations into human motion estimation

improves overall body MPJPE metrics. We quantify this in Table A.2.

For fair evaluation, this experiment uses synthetic hand pose
observations on the AMASS test set.

A.2.3. EgoPoser ablation

In Table A.3, we report MPJPE for a variant of EgoAllo trained
using the conditioning formulation from EgoPoser. This includes
temporally normalized head poses and global frame velocities. We also
report MPJPE without EgoPoser’s normalization; this is equivalent
to Absolute+Global Deltas in Table 1. We found that the impact of

EgoPoser’s normalization is small after adapting to our problem setting.

We hypothesize that this is because their temporal normalization
(subtraction using the first timestep’s position) is a simple linear
function, which makes it easier to learn end-to-end.

A.2.4. Additional qualitative results

We provide additional qualitative results for the body motion prior in
Figure A.5. EgoAllo estimates have the head aligned exactly to input
observations and the feet planted realistically on the floor.

A.3. Implementation Details
A.3.1. Training and testing

EgoAllo models are trained and tested using the splits recommended
by the official AMASS GitHub repository. We use ADAM and
learning rate le-4 for 3M steps. Training subsequence lengths in
[32,128] are sampled uniformly.

Details on AMASS annotation. To annotate AMASS with central
pupil frames (CPFs), we average pupil vertex positions (SMPL-H
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Figure A.5. Head pose-conditioned motion prior results for a
squatting sequence. Spatial shifts are used to visualize different
timesteps within the sequence. Hand observations are not used.

indices 6260, 6262, 2800, and 2802). CPF orientation is copied from
the head joint.

Test sequence lengths We evaluate lengths 32 and 128 to compare
performance on both our min and max train sequence lengths. For
length 32 test sequences, we filter out all AMASS test sequences
shorter than 32. We then randomly slice length-32 subsequences from
the remaining trajectories. For length 128 test sequences, we filter out
all AMASS test sequences shorter than 128. We then randomly slice
length-128 subsequences from the remaining trajectories.

A.3.2. Network architecture

EgoAllo uses a transformer [94] architecture with rotary positional
embeddings [88] for its denoising model 1ig(Zr,¢,n). Sampling is
performed by denoising all timesteps within a temporal window in
parallel: we do not sample autoregressively and therefore do not use
causal masking. Encoder details: latent encodings Z. are computed
as output from conditioning sequences ¢ as input using six transformer
blocks, each containing a self-attention layer followed by a 2-layer
MLP. Decoder details: the denoised output is computed using six
additional transformer blocks that take Z,, as input, while conditioning



on Z via cross-attention. All hidden dimensions are set to 512.

Body shapes. Per-timestep shapes are used for architectural
simplicity. At test time, we use the average body shape across
timesteps. In practice, we find that it is easy for the model to learn
temporal consistency.

Runtime. For a length-128 sequence, each forward pass through
EgoAllo’s denoising network takes 0.05 seconds on a single RTX 4090.
Because we use DDIM [86] for sampling, the number of denoising
steps for each sample can be chosen to make tradeoffs between sample
quality and speed. All experiments in our paper use 30 DDIM steps.

A.3.3. Guidance optimizer

For guidance, we use a Levenberg-Marquardt optimizer implemented
in JAX [5]. Levenberg-Marquardt is an iterative nonlinear least squares
algorithm, which requires solving a linearized subproblem at each
timestep. We compute the Jacobians needed for this as block-sparse
matrices for efficiency, and solve the resulting linear subproblems
using a Conjugate Gradient optimizer.

Runtime. The guidance optimizer converges in 0.15~0.2 seconds
on an RTX 4090. We compare our LM optimizer against off-the-shelf
PyTorch optimizers in Figure A.6.

A.3.4. Guidance Loss Details

The guidance objective Lguidance (©) combines three major components
as described in the main paper: Lhands, Lskaes and Lpor.  All
rotation-based error terms are implemented using geodesic distance
in the tangent space of SO(3). All weight terms can be found in our
open-source code release.

Hand-related Terms:

* Hand Pose HaMeR Local Alignment: Aligns local hand joint
rotations with HaMeR detections.

* Hand Reprojection: Aligns projected hand joints with 2D detections
in image space.

o Wrist Pose Alignment: Matches wrist positions and orientations with
3D observations.

Contact-related Terms:

» Foot Skating Prevention: Penalizes movement of foot joints
predicted to be in contact with the ground, using contact-weighted
position differences.

Prior-related Terms:

* Body Pose Prior: Regularizes body pose rotations toward denoiser
output.

* Hand Pose Prior: Regularizes hand poses toward denoiser output.

Position Prior: Regularizes joint positions toward denoiser output.

Delta Smoothness: Encourages smooth deviation from denoiser

output.

* Pose Smoothness: Encourages smooth body pose transitions.

* Hand Temporal Smoothness: Enforces smooth hand motion.

* Velocity Smoothness: Penalizes sudden changes in rotational velocity.

A.3.5. Floor height estimation

One requirements of EgoAllo is SLAM poses that can be situated
relative to the floor. While floor heights are provided in our training
data, they are not directly available on real-world data. We found that a
RANSAC-based algorithm works well on real-world data from Project
Aria [61]. We filter SLAM points by confidence, then use RANSAC to
find a z-value with that best fits a plane. Example floor plane outputs

using scenes from the EgoExo4D [17] dataset are shown in Figure A.7.
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(a) Costs over time. LM converges significantly faster than off-the-shelf
PyTorch optimizers for guidance optimization.

Optimizer Final Cost
Levenberg-Marquardt (ours) 209.05
torch.optim. LBFGS 215.96

torch.optim.Adam (Ir=1e-2) 248.01
torch.optim.Adam (Ir=1e-1) 1733.30

(b) Final costs. We report the final cost for each method in the plot above.

Figure A.6. Comparing guidance optimizers.

Figure A.7. Floor height examples. Point cloud-derived floor height
examples on the EgoExo4D dataset.

A.3.6. Biomech57 evaluation details

The majority of our evaluation data (AMASS [56] and RICH [26]) is
provided directly using SMPL conventions. Because EgoAllo outputs
SMPL-H parameters, this makes computation of joint error metrics
straightforward.

The one exception is the Aria Digital Twins dataset [61], which
we use for quantitative body metrics. Each device wearer in the Aria
Digital Twins dataset is recorded via an Optitrack motion capture
system, which records 57 joint locations (30 hand joints, 27 body
joints) following the Biomech57 joint template. To evaluate our
method on ADT, we match and compare the common major joints
between the two templates. We manually corresponded each of the 57
joints between Biomech57 and the standard SMPL-H joint conventions.



‘While the majority of these have 1:1 correspondences—feet, knees,
hips, shoulders, elbows, wrist, and finger joints, for example, are

consistently defined—we mask out others like the head and collar
bone joints that are misaligned.
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