
Appendix
This section contains supplemental material, offering fur-
ther results and analysis to complement the main paper. We
provide additional details on the following topics:
• Detailed Hyperparameters (Appendix A)
• Additional Ablations (Appendix B)
• Additional Dataset Details (Appendix C)
• Evaluation on Long Videos (Appendix D)
• Additional Qualitative Ablations (Appendix E)
• EVE Baseline for Videos (Appendix F)
• Broader Impact (Appendix G)

A. Detailed Hyperparameters
In Table 6 we provide comprehensive hyperparameter con-
figurations for Video-Panda’s three-stage training process.

Hyperparameter Stage-1 Stage-2 Stage-3

Batch Size 2048 2048 1024
Learning Rate (lr) 4e-4 4e-5 2e-5
LR Schedule cos. decay cos. decay cos. decay
LR Warmup Ratio 0.03 0.01 0.01
Weight Decay 0 0 0
Epoch 1 1 1
Optimizer AdamW AdamW AdamW
DeepSpeed Stage 2 2 2
LLM Frozen Trainable Trainable
STAB Trainable Trainable Trainable

Table 6. Hyperparameter Settings

B. Additional Ablations
Training Data for Initial Alignment: Table 7 shows the
impact of data scale during initial alignment. Using the full
dataset (702K samples) in Stage 1 yields marginally lower
performance compared to using half (351K samples). This
suggests our staged training approach benefits from gradual
complexity scaling, allowing the model to establish robust
representations before incorporating the complete dataset in
later stages.
Downsampling Position: Regarding temporal layer place-
ment in Table 8, we find that applying LSD after LSTE im-
proves performance on all datasets except of ActivityNet-
QA. For consistency across our experiments, we maintain
LSD placement after LSTE.
Downsampling Strategy: As shown in Table 9, our LSD
method outperforms alternative approaches. The Perceiver
Resampler (PR) performs notably poorly (21.3% lower on
MSVD-QA), likely due to excessive information compres-
sion. While average pooling performs better, it still under-
performs LSD by 6.7%, demonstrating the superiority of
our learnable downsampling approach.

#Samples for Initial Alignment MSVD-QA Activity Net-QA

702K Video-Text Pairs (full) 63.7/3.8 39.7/3.3
351K Video-Text Pairs (half) 64.7/3.8 40.0/3.3

Table 7. Ablation study on amount of data for the first training
stage.

Model MSVD-QA MSRVTT-QA TGIF-QA Activity Net-QA

Before LSTE 64.2/3.8 54.6/3.4 42.7/3.2 42.3/3.3
After LSTE (Ours) 64.7/3.8 54.8/3.4 42.9/3.2 40.0/3.3

Table 8. Ablation study on downsampling positions of LSD.

Model MSVD-QA Activity Net-QA

w/o LSD (half-resolution) 48.2/3.3 38.5/3.2
w/o LSD (avg pool) 58.0/3.6 38.1/3.2
w/o LSD (PR) 43.4/3.2 27.8/2.9

Video-Panda (LSD) 64.7/3.8 40.0/3.3

Table 9. Ablation study on downsampling methods. PR stands for
Perceiver Resampler [2].

Model MSVD-QA Activity Net-QA

CLIP 60.3/3.5 38.6/3.2
InternVideov2 62.5/3.6 39.6/3.2
DINOv2 61.7/3.5 38.1/3.2

LanguageBind (Video-Panda) 64.7/3.8 40.0/3.3

Table 10. Ablation study on different teacher encoders.

Different Teachers: As shown in Table 10, LanguageBind
consistently outperforms other teacher encoders across both
datasets. While InternVideo achieves the second-best per-
formance, it still falls short by 2.2% on MSVD-QA and
0.4% on Activity Net-QA. CLIP and DINOv2 show compa-
rable performance to each other but lag behind Language-
Bind by 3-4%, demonstrating the effectiveness of our cho-
sen teacher encoder.

C. Additional Dataset Details
Pre-training Dataset: The Valley-Pretrain-702K dataset
is a large-scale pre-training dataset designed for video-
language understanding tasks. It comprises 702K video-text
pairs from the WebVid dataset [4], filtered by [27] using
methods established by LLaVA [24] to optimize the bal-
ance between conceptual diversity and training efficiency.
The dataset is structured as single-round dialogues, where
each video is paired with questions about its content and
corresponding caption-based answers.
Fine-tuning Dataset: The Video-ChatGPT-100K dataset
was developed for fine-tuning video-language models,
comprising 100K video instruction samples collected



Model Vision Size (M) EgoSchema VideoMME-M

Video-ChatGPT 307 34.2 36.0
Video-LLaVA 425 36.1 38.1

Video-Panda 45 36.4 37.9

Table 11. Results on the EgoSchema and VideoMME-M datasets.

by [28]. The dataset combines human expertise with semi-
automated methods to balance quality and scalability. Ex-
pert annotators provide detailed, context-rich descriptions
that enhance the model’s comprehension of complex video
content. A semi-automatic framework leverages state-of-
the-art vision-language models to generate large-scale an-
notations efficiently, ensuring substantial data volume while
maintaining rigorous quality standards.

Fine-Grained Video QA Evaluation Dataset: We
evaluate fine-grained video question answering using the
Video-based Text Generation Performance Benchmarking
methodology developed by Video-ChatGPT [28]. This
benchmark provides a comprehensive evaluation frame-
work for assessing text generation in video-based conver-
sational models. Using the ActivityNet-200 dataset [8],
which contains videos with descriptive captions and human-
annotated question-answer pairs, the framework imple-
ments a systematic evaluation approach. The methodology
utilizes GPT-3.5 to evaluate models across multiple dimen-
sions on a scale of 1 to 5. The assessment criteria include:

(i) Correctness of Information: Evaluates accuracy of
generated text and its alignment with video content.

(ii) Detail Orientation: Assesses response comprehen-
siveness, examining both coverage of major points
and specificity of details.

(iii) Contextual Understanding: Measures the model’s
ability to interpret and respond within the video’s
broader context.

(iv) Temporal Understanding: Evaluates the model’s ca-
pacity to track and articulate the chronological se-
quence of events.

(v) Consistency: Assesses the model’s ability to main-
tain coherent responses across different questions and
video segments.

D. Evaluation on Long Videos

To explore the potential of Video-Panda on long video
benchmarks, we have evaluated our method on the
EgoSchema [30] and Video-MME-M [13] datasets. The re-
sults presented in Table 11 confirm the results presented in
the paper, i.e., we achieve similar or slightly better accu-
racy compared to Video-ChatGPT and Video-LLaVA, but
require much less computational resources (Table 3).

E. Additional Qualitative Ablations
We present additional qualitative examples of our ablation
studies in Figure 5, demonstrating Video-Panda’s effective-
ness across various video understanding tasks. When us-
ing the complete training dataset in Stage 1 (left-top exam-
ple), the model exhibits overfitting tendencies due to data
imbalance, as evidenced by the example showing dog in-
teractions—likely influenced by the disparity between dog
(7,807) and cat (5,050) instances in the Valley dataset. The
right-top example reveals that placing the LSD module
before LSTE impairs cliff recognition due to early token
downsampling and information loss. Models using alterna-
tive approaches (average pooling, half resolution, or per-
ceiver resampler) struggle with content recognition (e.g.,
cucumber, cat, pandas) compared to our learnable down-
sampling approach. Additionally, models using image-
based teachers (CLIP and DINOv2) tend to make frame-
specific predictions rather than considering global context,
as demonstrated by their failure to recognize shredded pota-
toes across multiple frames. We also provide additional
qualitative examples on each dataset in Figure 6, Figure 7,
and Figure 8.

F. EVE Baseline for Videos
As the original EVE model [11] was designed for image
processing, we conducted a fair comparison by re-training
it (denoted as EVE* in Table 1) using identical video data
(Valley-702K and Video-ChatGPT-100K). For processing
videos, each frame was treated independently as a sepa-
rate image, with CLIP-ViT-L/14 [35] serving as the teacher
model for distillation. While this approach enables frame-
level analysis, it neglects temporal relationships. In our im-
plementation, we employ Learnable Selective Downsam-
pling (LSD) to process video frames efficiently, reducing
each frame to a consistent token count while preserving es-
sential information. The resulting tokens are flattened into a
single sequence, with special split tokens inserted between
frame representations to maintain frame boundaries and en-
able temporal relationship learning.

G. Broader Impact
We introduce Video-Panda, an encoder-free Video Lan-
guage Model for video understanding. Our model ad-
dresses key practical challenges in large-scale AI deploy-
ment. While many VLMs raise concerns about data bias,
privacy, and computational costs, Video-Panda mitigates
these issues through two key design choices: training ex-
clusively on publicly available datasets and eliminating the
need for a pretrained encoder. This approach not only re-
duces ethical concerns but also significantly lowers com-
putational requirements and deployment costs, making the
model more accessible and environmentally sustainable.



Figure 5. Qualitative comparisons of different design choices of Video-Panda: The figure presents eight video examples with ground
truth (GT) annotations and model predictions under different training configurations. The top row demonstrates the effect of 702K training
samples in stage 1 (left) and the impact of performing Local Spatial Downsampling (LSD) before Local Spatial-Temporal Encoding
(LSTE) (right). The second row shows results from removing LSD while using average pooling (left), half-resolution (right), and perceiver
resampler (third row left). The third row right and fourth row illustrate the effects of different teacher models for knowledge distillation:
CLIP (third row right), Intern-Video (left), and DINOv2 (right). Each example includes the original model prediction (yellow) and an
ablated version (purple), highlighting how architectural and training choices affect Video-Panda’s ability to interpret dynamic visual scenes
and answer questions. The qualitative examples are from the MSVD-QA dataset.



Figure 6. Qualitative examples from the MSRVTT-QA dataset.

Figure 7. Qualitative examples from the TGIF-QA dataset.

Figure 8. Qualitative examples from the ActivityNet-QA dataset.


