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Figure 1. Visualization samples for spatial, depth, and geometry
prior. The blue ‘star’ means the current query token.

pretraining config DFormerv2-S/B/L

input size 224×224
weight init trunc. normal (0.2)
optimizer AdamW
base learning rate 1e-3
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999

batch size 1024
training epochs 300
learning rate schedule cosine decay
warmup epochs 5
warmup schedule linear
layer-wise lr decay F
randaugment (9, 0.5)
mixup 0.8
cutmix 1.0
random erasing 0.25
label smoothing 0.1
stochastic depth 0.1/0.3/0.5
head init scale F
gradient clip F
token label T
exp. mov. avg. (EMA) T

Table 1. Pretraining settings. All the pretraining experiments are
conducted on 8 3090 GPUs.

1. More insights about geometry prior.

To better understand the functions of depth and spatial pri-
ors, we present the visualization for them and geometry
prior in Fig. 1. It is a supplement for the Fig.7 and Tab.3 of
the main paper. Two objects that are far apart may not dif-
fer much in depth. Thus, spatial perception is also required.
Combining the depth and spatial priors, our geometry pri-
ors can better reflect the 3D position relationships across the

whole scene.

2. Configuration of our models
The detailed configurations for the three scales of our
DFormerv2 are shown in Tab. 2.

3. Details about the decomposition
The detailed decomposed self-attention is shown in Fig. 2.

4. Experimental Details
4.1. Pretraining settings
The details for the pretraining in DFormerv2 is shown in
Tab. 1.

4.2. Finetuning settings.
Details for the finetuning experiments are shown in Tab. 3.

4.3. Details of the experiments in Tab.7 of the main
paper.

In Tab.7 of the main paper, we conduct experiments to see
the effect of RGB and depth on classification and segmen-
tation. To exclude the influence of factors outside the input
modalities, we adopt similar architecture for the three input
manners. For the architecture with RGB input, we adopt
DFormerv2-S without the geometry prior part. For the ar-
chitecture with depth input, we use the same architecture
with RGB and change the input channel of stem layer from
3 to 1. For the architecture with RGB-D input, we employ
DFormerv2-S. The training processes for classification and
segmentation are separate. The classification training set-
tings is the pretraining settings. The foreground segmen-
tation adopt the common settings in foreground segmen-
tation/ salient object detection [1, 3, 4]. For performance
evaluation, we adopt two golden metrics of the binary seg-
mentation, i.e., mean absolute error (MAE) [6], weighted
F-measure (wF) [5].

For the 50K samples and corresponding category label
from ImageNet [7], we also incorporate the generated depth
maps as same as DFormer [10] and the segmentation map
from LUSS [2]. The segmentation annotations from LUSS
provide the mask for the foreground in the scene, which is
highly related to category. We split the 50K samples to 45K
and 5K for training and validation respectively.

References
[1] Deng-Ping Fan, Ming-Ming Cheng, Jiang-Jiang Liu, Shang-

Hua Gao, Qibin Hou, and Ali Borji. Salient objects in clut-



Stage Output size Expansion DFormerv2-S DFormerv2-B DFormerv2-L

1 H
4
× W

4
4 C1 = 64, N1 = 3 C1 = 80, N1 = 4 C1 = 112, N1 = 4

2 H
8
× W

8
4 C2 = 128, N2 = 4 C2 = 160, N2 = 8 C2 = 224, N2 = 8

3 H
16

× W
16

3 C3 = 256, N3 = 18 C3 = 320, N3 = 25 C3 = 448, N3 = 25
4 H

32
× W

32
3 C4 = 512, N4 = 4 C4 = 512, N4 = 8 C4 = 640, N4 = 8

Decoder dimension 512 512 1024
Parameters (M) 26.7 53.9 95.5

Table 2. Detailed configurations of the proposed DFormerv2. ‘Ci’ represents the channel number in i-th stage. ‘Ni’ is the number of
building blocks in i-th stage. ‘Expansion’ is the expand ratio for the number of channels in MLPs. ‘Decoder dimension’ denotes the
channel dimension in the decoder.

(a) Self-Attention

𝑄𝑄

𝑄𝐾

𝑄𝑉

C × 𝐻𝑊

C × 𝐻𝑊

C × 𝐻𝑊

𝐻𝑊 × C

C × 𝐻𝑊

𝐻𝑊 × 𝐻𝑊

C × 𝐻𝑊 C × 𝐻𝑊

𝑄𝑥

𝐴𝑡𝑡𝑛

C × 𝐻 ×𝑊

(b) Decomposed Self-Attention

𝑄𝑦

𝐾𝑥

𝐾𝑦

𝑄𝑄

𝑄𝐾

𝑄𝑉

C × 𝐻𝑊

C × 𝐻𝑊

C × 𝐻𝑊

C ×𝑊 ×𝐻 𝐻 ×𝑊𝑊

𝑊 × 𝐻 × C

𝐴𝑡𝑡𝑛𝑦

𝐴𝑡𝑡𝑛𝑥

𝐻
𝑊
×
𝑊

𝐻𝑊 × 𝐻

𝐻𝑊 × 𝐻𝑊

C × 𝐻 ×𝑊

𝐴𝑡𝑡𝑛

Figure 2. Decomposition on the attention. Here we emphasize the decomposition operation and omit the geometry prior for simplicity.

Pretraining config DFormerv2-S DFormerv2-B DFormerv2-L

input size 480× 640 / 4802 480× 640 / 4802 480× 640 / 4802

optimizer AdamW AdamW AdamW
base learning rate 6e-5/8e-5 6e-5/8e-5 6e-5/8e-5
weight decay 0.01 0.01 0.01
batch size 8/16 8/16 8/16
epochs 500/300 500/300 500/300
optimizer momentum β1, β2=0.9, 0.999 β1, β2=0.9, 0.999 β1, β2=0.9, 0.999

learning rate schedule linear decay linear decay linear decay
warmup epochs 10 10 10
warmup schedule linear linear linear
layer-wise lr decay None None None
aux head None None None
stochastic depth 0.1/0.1 0.1/0.1 0.2/0.3

Table 3. DFormerv2 finetuning settings on NYUDepthv2 [8]/SUNRGBD [9]. Multiple stochastic depth rates, input sizes and batch
sizes are for NYUDepthv2 and SUNRGBD datasets respectively. All the finetuning experiments for RGB-D semantic segmenations are
conducted on 4 NVIDIA 3090 GPUs.
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