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Supplementary Material

In this supplementary material, we add more method de-
scriptions, implementation details, and experiment results.
Specifically, the method section includes detailed explana-
tions of the knowledge extractor in Sec. § A. The imple-
mentation details provide configurations of each module in
our model in Sec. § B. In the part of experiments in Sec.
§ C, we present more main results, ablation studies, hyper-
parameter experiments, parameter sensitivity analysis, etc.

A. More Details of Method
A.1. Knowledge Parser
In the KADAP framework, a triplet extraction algorithm
was developed to process the semantic role labels produced
by the SRL model [2]. This algorithm generates a list of
triplets for each input sample. The pseudo-code for the al-
gorithm is presented as Algorithm 1. Specifically, B-ARG0
corresponds to the subject, B-V denotes the verb, B-ARG1
represents the direct object, B-ARG2 indicates the indirect
object, and B-ARGM captures additional contextual infor-
mation. Furthermore, I-* signifies the subsequent tokens
associated with each component. Using the semantic labels
L assigned to these tokens, the final triplet list T∗ is con-
structed.

B. More Implementation Details
The key hyperparameters for each module of the proposed
model are detailed as follows.

For the BLIP caption generator, the hyperparameters
were set to num beams = 5, repetition penalty = 5.0,
max new tokens = 50, and min new tokens = 30. The
input prompt for BLIP was defined as:

“What is the information of the subject in the picture?
What is the facial expression and the body movement of the
subject in the picture? What is the emotional meaning of the
image? Please answer these questions with a descriptive
sentence.”

For the UNet module, the input image size was set to
512×512 pixels, with F containing 4 feature maps. The i-th
feature map Fi had spatial dimensions Hi = Wi = 2i + 2,
where i = 1, 2, 3, 4. The backbone architecture followed
the configuration of Stable Diffusion [5].

In the MoE predictor, 8 experts were used, with k = 2
for the TopK operation. The number of attention heads was
set to 8, while the MLP in CLIEA was implemented as a
single linear layer. The text branch of CLIP [4] served as
the text encoder T .

Algorithm 1 Extract Triples from Semantic Role Labels

Input: T: initialized triple dict; d : initialized dicey sub-
ject; L: tags of sentence; W: words of sentence;

Output: T∗: handled triple dict;
for each i,tag in L do

if tag is B-ARG0 then T[subject].append(wi)
add subsequent words warg0

i by I-ARG0
else if tag is B-V then T[verb].append(wi)

add subsequent words wv
i by I-V

else if tag is B-ARG1 then
if T[subject] is empty then

T[subject].append(wi)
add subsequent words wARG1

i by I-ARG1
elseT[object].append(wi)

add subsequent words wARG1
i by I-ARG1

else if tag is B-ARG2 then T[object].append(wi)
add subsequent words wv

i by I-ARG2
else if tag starts with B-ARGM then

if not d then Set d to wi + subsequent words wm
i

if T[object] is empty and d is not empty then
Set T[object] to d

if T[subject],T[verb],T[object] are all not empty then
return T

For cross-domain dataset label alignment, all datasets
were standardized to six emotion categories: surprise, hap-
piness, disgust, fear, sadness, and anger.

The training process utilized the Emoset training set on a
single A800 GPU. The KADAP framework was trained for
10 epochs, requiring approximately 40 hours. Additionally,
training the CLIEA component required an extra 1 hour per
epoch.

C. More Results of Experiments
C.1. Main Results
We also conducted a single-domain test for the Emoset [7]
and SER30K [3] training sets: the training set and the test
set belong to the same data set. As the Table 1 shows, our
KADAP is 4 − 5% better than the previous SOTA model
on both datasets. This proves that our method has a better
ability to detect emotions.

C.2. Ablation Study
Variants of TIE. We performed ablation experiments on
disturbing variables in TIE. This time, we will intervene



Methods Accuracy(%)
Emoset SER30K

MDAN [6] 75.75 59.38
LORA-V [3] 76.27 67.28
TGCA-PVT [1] 78.70 68.80
KADAP 83.38 72.97

Table 1. Experimental results of single domain setting on Emoset
and SER30K dataset.

with the k variable, and we select samples with different la-
bels under the same batch to operate. Specifically, we first
fixed the P of each sample, which required us to choose
the corresponding emotional label prompt according to the
ground truth of the sample. Then, the knowledge variable
k∗ produced by other dissimilar samples in the same batch
is used to form counterfactual alignment. Finally, counter-
factual contrast learning is used to distinguish different sim-
ilarity Y :

Lk
ccl = −

∑
log

exp(S(Yvi , Yki,pi)/τ)∑B
j ̸=y(i) exp(S(Yvi , Ykj ,pi

)/τ)
, (1)

where τ is the temperature coefficient and B is the num-
ber of mini-batch. We use CLIEAk to indicate this vari-
ant, CLIEAp to indicate the method used in the body, and
KADAP to indicate that CLIEA is not used and with no
need for target domain samples. Our experimental results
under multiple DA settings are shown in Table 2.

Task KADAP CLIEAk CLIEAp

E→S 57.71 58.67(+0.96) 62.78(+5.07)
E→P 35.84 34.91(-0.93) 40.55(+4.71)
E→A 47.14 46.59(-0.55) 51.20(+4.06)
S→E 37.77 38.60(+0.83) 41.29(+3.52)
S→P 35.21 34.95(-0.26) 38.69(+3.48)
S→A 36.94 37.81(+0.87) 42.50(+5.56)

Table 2. Influence of selection of interference factors in TIE on
model performance

It is clear that the results of this experiment prove that
intervening with k to calculate TIE is indeed not an ideal
choice.
Pseudo Labels We analyzed the pseudo-labels generated
by CLIEA and compared the zero-shot alignment capabili-
ties of the CLIP. Specifically, we use six-label emotions to
form prompt words, like “A happy photo.” After input to
the CLIP text encoder, the resulting text tag is embedded.
The pseudo-label is obtained by direct comparison with the
visual representation. We compared the pseudo-labels ob-
tained by CLIEA with this native method to get the accuracy
of the two pseudo-labels.

Methods E→S S→E
Emoset SER30K SER30K Emoset

CLIP [4] 40.57 34.98 39.72 30.80
CLIEA 82.19 63.24 71.98 48.94

Table 3. Experimental results of different pseudo-labels generative
method on E→S and S→E tasks.

More Cross-domain Results As shown in Figure 1, we re-
port the correlated results of different datasets in the ab-
lation experiment, that is, the DA tasks of E→P, E→A,
S→P, S→A. Experimental results demonstrate that the pro-
posed LoRA fine-tuning knowledge-guided cross-attention
mechanism is highly effective compared to other fine-
tuning strategies. Our proposed method provides a new
lightweight and robust alternative of emotion recognition.

Figure 1. Effectiveness of different fine-tuning strategies on the
more DA task. We only report the results on the target domain.

In addition to the ablation experiments of various mod-
ules of UC setting with SER30K as source domain data
in the main paper, we present the experimental results of
Emoset here, as shown in Table 4. It is observed that the
introduction of MoE and triples t can improve the perfor-
mance of the model, especially on the target domain data.
For the input of MoE, processing both visual and knowledge
representation can improve the generalization ability of the
model and improve the performance in the target domain.

C.3. Hyper-parameter Study
We recorded the performance of the two variants of our
model at the cross-domain training and analyzed the accu-
racy for each epoch. The first variant uses only KADAP,
while the second one, KCDP, incorporates the CLIEA ap-
proach. As shown in Figure 2, we plotted the accuracy of



Modules Datasets
c t Classifier E S
✓ - Cglobal 82.72 55.62
- ✓ Cglobal 83.10(+0.38) 56.33(+0.71)
✓ ✓ Cglobal 83.12(+0.40) 56.35(+0.73)
✓ - MoEv 83.24(+0.52) 56.78(+1.16)
- ✓ MoEv 83.31(+0.59) 57.27(+1.65)
✓ ✓ MoEv 83.38 (+0.66) 57.16(+1.54)
✓ - MoEv+k 83.25(+0.53) 56.78(+1.16)
- ✓ MoEv+k 83.28(+0.56) 57.28(+1.66)
✓ ✓ MoEv+k 83.32(+0.60) 57.71(+2.09)

Table 4. Ablation study on UC setting with training on Emoset.
The symbols in the table are the same as those in the text part.

each method in both the source domain and the target test
domain. We can observe that both variants exhibit relatively
stable trends in the source domain, while the target domain
shows more fluctuations. KCDP, due to the involvement of
the CLIEA, performs better in the target domain, which can
be attributed to its cross-domain generalization ability.

Figure 2. Effectiveness of different fine-tuning strategies on the
more DA task. We only report the results on the target domain.

We also investigated the hyperparameters λ1 and λ2 in
the loss function. The experiment was carried out on the
E→S task based on DA setting. The experimental results
are shown in the table below.

λ1 0.2 0.4 0.6 0.8 1
Acc. 61.89 62.03 67.22 62.44 62.78

Table 5. Experimental results of different λ1, where λ2 = 0.7

C.4. Influence of Module parameter
Samples of Target Domain We investigated the effect of
the number of unlabeled target domain samples sampled

λ2 0.2 0.4 0.6 0.8 1
Acc. 62.01 62.24 62.51 62.12 62.37

Table 6. Experimental results of different λ2, where λ2 = 0.7

for training in CLIEA method on the cross-domain abil-
ity of the model. As can be seen from Figure 3, with the
increase of the number of target domain samples k in the
training process, the accuracy of the model in the target
domain (SER30K) gradually increases, while the accuracy
of the model in the source domain (Emoset) changes lit-
tle. This shows that the increase of target domain data has
a significant effect on improving the performance of UDA
model in the target domain, especially in the case of small
samples. However, as the number of samples increases to
a certain threshold (for example, after k = 3.2), the accu-
racy of the target domain tends to increase gradually, in-
dicating that the performance improvement of the model
may be bottlenecked under a large number of target domain
samples. This experimental result verifies the effectiveness
of model tuning through incremental target domain data in
cross-domain tasks and reveals the importance of reason-
able selection of sample size in domain adaptation tasks.
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Figure 3. The influence of the number of unlabeled target domain
samples k on the cross-domain capability of the model

Scale E→S S→E
i ∈ {1} 61.75 39.90
i ∈ {4} 61.02 39.27
i ∈ {1, 4} 61.83 40.18
i ∈ {1, 2, 4} 61.94 40.92
i ∈ {1, 2, 3, 4} 62.78 41.29

Table 7. Experimental results of different scales of attention maps.

Scale of Attention Maps We analyzed the impact of atten-
tion map scales in the denoising diffusion model. Different



scales, represented by i in Ai of the previous sections, were
selected as the influencing variables. DA experiments were
conducted on E→S and S→E, and the results are shown in
Figure 7. Our model achieved the best performance by se-
lecting the attention maps at the highest number of scales as
visual features. This indicates that integrating multi-level
feature maps captures more visual details, which benefits
affective perception.
Key parameters of MoE Predictor We explored the ef-
fects of different key parameters in the MoE predictor on
model performance, i.e. the number of experts N and k of
TopK. The experiments were conducted on E→S and S→E
tasks based on DA Settings. We fixed k to 2 and changed
the number of experts, and the results were shown in Table
8. At the same time, we fixed the number of experts to 8 and
changed the k variable. The results are shown in the Table
9. Sufficient empirical analysis shows that reasonable allo-
cation of weights among experts can effectively deal with
the visual and knowledge representation in the model.

N 2 4 6 8 16 20
E→S 62.04 62.13 61.95 62.78 62.41 62.24
S→E 40.31 40.26 40.98 41.29 41.07 41.17

Table 8. Experimental result with different numbers of experts N
on DA setting.

k 1 2 3 4 8
E→S 62.34 62.78 62.75 62.27 61.94
S→E 41.20 41.29 41.34 40.58 40.67

Table 9. Experimental result with different k of TopK on DA
setting.
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