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7. Related Work
Interpretability of LLMs. Research on attention mecha-
nisms has significantly enhanced our understanding of large
language models. For instance, Xiao et al. [42] highlight a
phenomenon known as attention sink, indicating that main-
taining the key-value states of initial tokens can largely re-
store the performance of window attention, primarily due
to the strong attention scores associated with these tokens.
Furthermore, Wang et al. [40] discovered that label words
serve as anchors in in-context learning, facilitating the ag-
gregation and distribution of task-relevant information. In
addition, Wu et al. [41] identified a specific category of atten-
tion heads, referred to as retrieval heads, which are primarily
responsible for extracting relevant information from lengthy
contexts. However, most studies on attention mechanisms
focus exclusively on text-based models, creating a gap in
our understanding of information interaction within MLLMs.
Our research aims to bridge this gap, offering new insights
into how MLLMs process and utilize visual information.

Inference Optimization for LLMs. Research on ef-
ficient inference in large language models has primarily
focused on two categories of optimization: (1) Memory
Consumption Optimization, which includes methods such
as FlashAttention [9], vLLM [13], and RingAttention [20]
that enhance the memory efficiency of the attention mod-
ule without significantly altering outcomes; and (2) Com-
putation Simplification, which involves techniques like
StreamingLLM and FastGen [11] that improve inference
efficiency by eliminating redundant attention calculations.
This paper emphasizes the latter category. Most existing
methods target text-only models, creating a notable gap in
their applicability to MLLMs. Recent strategies, including
FastV and VTW [19], have accelerated inference speeds
through image token pruning, yet they overlook the shift in
the dominant flow of visual information, failing to fully har-
ness the potential for accelerating the inference of MLLMs.

8. Results of modality impact assessment
Fig. 9 illustrates the influence of various modalities on the
prediction outcomes of the LLaVA-1.5-7B and LLaVA-1.5-
13B models within the Sci-VQA and AOKVQA datasets.

9. Results of visual flow analysis
Fig. 10 illustrates the significance of intra-visual flow com-
pared to visual-textual flow in the LLaVA-1.5-7B and
LLaVA-1.5-13B models within the Sci-VQA and AOKVQA

datasets. In shallow layers, the importance of visual-textual
information flow is notably high, while intra-visual informa-
tion flow is comparatively low. In deeper layers, intra-visual
information flow becomes dominant.

10. Details for computation of prediction bias
The prediction biases, Evv,l and Evt,l, resulting from disrup-
tions in visual-textual and intra-visual information flows, as
introduced in Sec. 3.3, may have caused confusion. Here,
we provide a more detailed explanation of their calculation
methods.

In the absence of disruption to information flow, Score
Consistency of the model is denoted as C. When intra-
visual information flow in the l-th layer is sidrupted, Score
Consistency is represented as Cvv,l. The prediction bias
Evv,l resulting from this disruption is calculated as follows:

Evv,l = C − Cvv,l. (11)

Similarly, Score Consistency of the model after disrupting
visual-textual information flow in the l-th layer is denoted as
Cvt,l. Consequently, the prediction bias Evt,l resulting from
this disruption is calculated as follows:

Evt,l = C − Cvt,l. (12)

11. Reasons for Using Bias Ratio
We use the Dl metric to validate the importance of the intra-
visual information flow, based on two main considerations:

• As demonstrated by the experimental results in Sec. 2.2,
the prediction outcomes are primarily influenced by
intra-textual information flow, which weakens as the
network depth increases. Consequently, although intra-
visual information flow becomes more prominent in
deeper layers, its disruption has minimal impact on pre-
diction outcomes. Therefore, we use the significance
of visual-textual information flow as a baseline and ap-
ply a logarithmic ratio to measure the variation in the
importance of intra-visual information flow.

• We focus on the relative strength between intra-visual
and visual-textual information flows to clearly illustrate
the shift in the mechanism of visual information process-
ing in Multimodal large language models.

12. Experimental Results for HiMAP
Section 12.1 discusses the performance on ChartQA and
DocQA datasets, Section 12.2 presents results on the MME



(a) Sci-VQA (LLaVA-7B) (b) Sci-VQA (LLaVA-13B) (c) A-OKVQA (LLaVA-7B) (d) A-OKVQA (LLaVA-13B)

Figure 9. Experimental Results of modality impact assessment. The contribution of visual modality is lower than textual modality.

(a) Sci-VQA (LLaVA-7B) (b) Sci-VQA (LLaVA-13B) (c) A-OKVQA (LLaVA-7B) (d) A-OKVQA (LLaVA-13B)

Figure 10. Additional Experimental Results of visual flow analysis. Dominant flow of visual information shifts as model depth increases.

Benchmark, Section 12.3 analyzes HiMAP’s impact on con-
tent generation in LLaVA-Bench, and Section 12.4 com-
pares the inference speed improvements between HiMAP
and FastV.

Model Method Ratio ChartQA DocQA

Baseline 100% 9.7 8.6LLaVA-7B HiMAP 24% 9.4 8.8

Baseline 100% 65 64.9QwenVL-7B HiMAP 23% 65.1 65.3

Table 5. Performance on ChartQA and DocQA datasets. In each
configuration, the highest scores are highlighted in red, while the
lowest computational cost are marked in green. The parameters
for HiMAP are set as K1 = 2, R1 = 50%, K2 = 8, and R2 =
75%.

12.1. Results on ChartQA & Doc-QA
We conducted a comprehensive evaluation of HiMAP’s per-
formance on the ChartQA [25] and DocQA [26] datasets,
utilizing the LLaVA-v1.5 model family as our foundation.
The experimental results, summarized in Tab. 5, demonstrate
that effectively reduces computational overhead with mini-
mal loss in model performance. This highlights HiMAP’s ef-
ficacy in fine-grained visual question-answering tasks, show-
ing that its pruning of visual tokens does not compromise
the model’s ability to perceive image details.

12.2. Results on MME
Tab. 6 illustrates the experimental outcomes of LLaVA-
v1.5-7B model on the MME benchmark after incorporat-
ing HiMAP. The results indicate that, for both perception-
focused and cognition-focused tasks, HiMAP method not
only significantly reduces computational costs but also pre-
serves or marginally enhances the model’s performance.

Model Method Ratio MME-P MME-C

Baseline 100% 1459.2 290.7LLaVA-7B HiMAP 24% 1492.6 292.5

Baseline 100% 1517.3 277.1LLaVA-13B HiMAP 23% 1526.9 282.5

Table 6. Performance on MME Benchmark. In each configura-
tion, the highest scores are highlighted in red, while the lowest
computational cost are marked in green. The parameters for
HiMAP are set as K1 = 2, R1 = 50%, K2 = 8, and R2 = 75%.

Fig. 11 highlights the performance of the LLaVA-v1.5-
7B model on each subtask of the MME Benchmark after
applying HiMAP, demonstrating that HiMAP effectively
sustains the model’s performance across all subtasks.

12.3. Case Study on LLaVA-Bench
Fig. 12 illustrates the long-text generation performance of
the LLaVA-v1.5-7B model on LLaVA-Bench after the appli-
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(a) Perception-Related Tasks from MME Benchmark
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(b) Cognition-Related Tasks from MME Benchmark

Figure 11. Performance of LLaVA-v1.5-13B model on the MME Benchmark. After applying HiMAP method, the model retained nearly
all of its original performance across each task.

Model Method Accurancy Total Time GPU-Memory Latency/Example

Baseline 67.9 6:36 17G 0.197s
FastV 67.8 4:51 15G 0.144sLLaVA-v1.5-7B

HiMAP 68.2 3:54 14G 0.116s

Baseline 71.6 10:45 31G 0.320s
FastV 71.2 7:13 26G 0.214sLLaVA-v1.5-13B

HiMAP 72.5 5:13 23G 0.158s

Table 7. Comparison of inference speed and GPU memory usage between HiMAP and FastV. HiMAP outperforms FastV by delivering
faster inference speeds and lower GPU memory usage while maintaining higher prediction accuracy. In each configuration, the fastest
inference speed and the lowest GPU memory usage are highlighted in green.

cation of HiMAP. The results indicate that, when HiMAP
is configured with appropriate parameters, it achieves a
substantial reduction in computational overhead while al-
most entirely retaining the model’s ability to produce high-

quality long-text responses. Remarkably, even with aggres-
sive parameter settings (K1 = 2, R1 = 50%, K2 = 8,
R2 = 87.5%), the model consistently delivers fluent and
accurate outputs.



The unusual aspect of this image is that a man is ironing clothes 

while standing on the back of a moving yellow taxi. This is not a 

typical scenario, as ironing clothes is usually done indoors, in a 

comfortable and stable environment. 

The unusual aspect of this image is that a man is ironing clothes 

while standing on the back of a yellow taxi. This is not a typical 

scene, as ironing clothes is usually done indoors, in a more 

controlled environment.

The unusual aspect of this image is that a man is ironing clothes 

while standing on the back of a yellow taxi. This is not a typical 

scene, as ironing clothes is usually done indoors, in a comfortable 

and safe environment.

What is unusual about this image?

User

AI Assistant

The unusual aspect of this image is that a man is ironing clothes 

while sitting on top of a yellow taxi. This is not a typical scene, as 

ironing clothes is usually done indoors, in a comfortable and safe 

environment.

Apply HiMAP

K1 = 2,  R1 = 50%    

K2 = 15,  R2 = 75%

32% FLOPs

Apply HiMAP

K1 = 2,  R1 = 50%    

K2 = 8,  R2 = 50%

34% FLOPs

Apply HiMAP

K1 = 2,  R1 = 50%    

K2 = 8,  R2 = 75%

24% FLOPs

Apply HiMAP

K1 = 2,  R1 = 50%    

K2 = 8,  R2 = 87.5%

20% FLOPs

The unusual aspect of this image is that a man is ironing clothes 

while standing on the back of a moving yellow taxi. This is not a 

typical scenario, as ironing clothes is usually done indoors, in a 

more controlled environment. 

Vanilla Decoding

100% FLOPs

The unusual aspect of this image is that a man is ironing clothes 

while standing on the back of a moving yellow taxi. This is not a 

typical scenario, as ironing clothes is usually done indoors, in a 

comfortable and stable environment. 

Apply HiMAP

K1 = 2,  R1 = 50%    

K2 = 15,  R2 = 50%

39% FLOPs

The unusual aspect of this image is that a man is ironing clothes 

while standing on the back of a moving yellow taxi. This is not a 

typical scenario, as ironing clothes is usually done indoors, in a 

comfortable and stable environment. 

Apply HiMAP

K1 = 2,  R1 = 50%    

K2 = 15,  R2 = 50%

39% FLOPs

· Green-highlighted text 

indicates correct responses

· Red-highlighted text 

Indicates incorrect answers.

Figure 12. The output results after applying HiMAP method. Correct segments of outputs are highlighted in green, while incorrect
segments are marked in red. The findings indicate that HiMAP does not compromise the quality of the responses generated by the model.

12.4. Comparison of Inference Speeds
We utilized the LLaVA-v1.5 model family to evaluate the
inference speed and GPU memory usage of HiMAP and
FastV on the ScienceQA dataset. The results, presented
in Tab. 7, show that applying HiMAP achieves higher pre-
diction accuracy, faster inference speed, and lower GPU
memory consumption compared to FastV. These improve-
ments are primarily driven by HiMAP’s ability to perform
precise and efficient pruning of visual tokens. By leveraging

different vision-dominant information streams at the model’s
shallow and deep layers, HiMAP maximizes the potential
for inference acceleration.

13. Ablation Studies on HiMAP
Sec. 13.1 delves into the impact of HiMAP’s parameters,
K and R, on pruning performance. Sec. 13.2 evaluates the
individual contributions of the shallow-layer and deeper-
layer pruning modules to predictions.
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(a) Accuracy

�� ��� ��� 	�� 
	���
���������������

�

��

��

��


�

��


��
��
��
��
���
��
�
��
��

������
������
������
�������
�������
�������

(b) FLOPs Reduction Ratio

Figure 13. Ablation Study on the Parameters K1 and R1.

Model K2 R2 TFLOPs FLOPs Ratio ScienceQA A-OKVQA NoCaps Flickr30k

Baseline 2.98 100% 67.9 76.7 78.8 50.9
8 87.5% 0.59 20% 68 71.7 74.6 46.2
8 75% 0.73 24% 68.3 77.2 76.1 47.2
8 50% 1.01 33% 67.8 76.7 76.9 49.1

15 87.5% 0.88 29% 68.1 77.2 77.5 50.1
15 75% 0.97 32% 68.2 77.2 78.7 51.3

LLaVA-v1.5-7B

15 50% 1.17 39% 68.2 77.2 79.2 51.7

Baseline 5.81 100% 71.6 82 82.8 53.6
8 87.5% 1.08 18% 72 79.9 77.5 47.5
8 75% 1.36 23% 72.1 81.4 82.5 52.6
8 50% 1.94 33% 71.9 81.2 82.7 52.8

15 87.5% 1.52 26% 71.7 81 82.9 52.6
15 75% 1.74 30% 72.5 81.2 83.7 53.8

LLaVA-v1.5-13B

15 50% 2.19 37% 72.1 81.1 83.9 54.1

Table 8. Ablation Study on K2 and R2. In each configuration, the highest score is marked in red, while the second-highest score is
marked in blue.

13.1. Effect of Filtering Layer & Filtering Ratio

Ablation studies were performed on parameters K1 and R1.
After excluding the deeper-layer pruning module, we tuned
K1 and R1 to assess their influence on HiMAP’s pruning
effectiveness. As illustrated in Fig. 13, it is clear that pruning
less than 50% of visual tokens beyond the second model
layer does not substantially impact prediction accuracy.

We conducted further ablation experiments on the param-
eters K2 and R2. By fixing K1 = 2 and R1 = 50%, we
adjusted the values of K2 and R2 to analyze their impact
on the performance of HiMAP pruning. The experimental
results are presented in Table 1. For short-text response gen-
eration tasks, such as ScienceQA and A-OKVQA, setting

K2 = 8 and R2 = 75% effectively minimizes computational
overhead while maintaining model performance. However,
for long-text response generation tasks, such as Nocaps and
Flickr30k, a more conservative configuration, K2 = 15 and
R2 = 75%, is necessary to ensure the model’s performance
remains uncompromised.

13.2. Effect of Pruning Module
Tab. 9 presents the results of ablation studies conducted on
the pruning modules. It is evident that applying either the
shallow-layer or deeper-layer pruning module individually
can reduce computational overhead without compromising
model performance. This demonstrates that both modules
effectively accelerate model inference.



Model SHL-PM DPL-PM TFLOPs FLOPs Ratio ScienceQA A-OKVQA

LLaVA-v1.5-7B

✗ ✗ 2.98 100% 67.9 76.6
✓ ✗ 1.56 54% 68.3 77.1
✗ ✓ 1.78 34% 68.1 77.2
✓ ✓ 0.73 24% 68.3 77.2

LLaVA-v.15-13B

✗ ✗ 5.81 100% 71.6 82.0
✓ ✗ 3.09 53% 71.8 81.2
✗ ✓ 1.73 30% 72.0 81.3
✓ ✓ 1.36 23% 72.1 81.4

Table 9. Ablation Study on Shallow-layer Pruning Module and Deeper-layer Pruning Module.

14. Prompts for different tasks
Sci-VQA Dataset. In the Sci-VQA dataset, input template
for the model is presented below, with the prompts high-
lighted in green and the image highlighted in red.

Sci-VQA Dataset

A chat between a curious user and an artificial intelli-
gence assistant. The assistant gives helpful, detailed,
and polite answers to the user’s questions.

USER: IMAGE
Context: Select the best answer.
Which property do these three objects have
in common?
A. shiny B. slippery C. opaque
Answer with the option’s letter from the
given choices directly.

ASSISTANT:

AOKVQA Dataset. In the AOKVQA dataset, input tem-
plate for the model is presented below, with the prompts
highlighted in green and the image highlighted in red.

A-OKVQA Dataset

A chat between a curious user and an artificial intelli-
gence assistant. The assistant gives helpful, detailed,
and polite answers to the user’s questions.

USER: IMAGE
Analyse the image and choose the best
answer for the following question:
What is in the motorcyclist’s mouth?
Options: (A) toothpick (B) food (C) popsi-
cle stick (D) cigarette
Output the letter of the correct answer.

ASSISTANT:

POPE Benchmark. In the POPE benchmark, input tem-
plate for the model is presented below, with the prompts
highlighted in green and the image highlighted in red.

POPE Benchmark

A chat between a curious user and an artificial intelli-
gence assistant. The assistant gives helpful, detailed,
and polite answers to the user’s questions.

USER: IMAGE
Is there a cow in the image? Please just
answer yes or no.

ASSISTANT:

Nocaps & Flickr30k Datasets. In the Nocaps and Flickr30k
dataset, input template for the model is presented below, with
the prompts highlighted in green and the image highlighted
in red.

Nocaps & Flickr30k Datasets

A chat between a curious user and an artificial intelli-
gence assistant. The assistant gives helpful, detailed,
and polite answers to the user’s questions.

USER: IMAGE
Provide a one-sentence caption for the
provided image.

ASSISTANT:


