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Detailed Experimental Settings(Appendix A)
We conducted experiments on two commonly used datasets,
CIFAR-100 and TinyImagenet. We conducted experiments
on two commonly used datasets, CIFAR-100 and Tiny-
ImageNet, with a total of four different settings: CIFAR-
100 #100, CIFAR-100 #200, Tiny-ImageNet #200, and
Tiny-ImageNet #400. CIFAR-100 contains 100 classes,
while Tiny-ImageNet contains 200 classes. CIFAR-100
#100 and Tiny-ImageNet #200 indicate that one sample
was selected from each class, whereas CIFAR-100 #200
and Tiny-ImageNet #400 indicate that two samples were se-
lected from each class.

Our code is built upon the open-source semi-supervised
learning framework USB1 and adopts its defined strong and
weak augmentation methods. Detailed experimental set-
tings and the adopted data augmentation methods are shown
in the Table below.

Experiment Settings Values
Model vit-tiny-patch32

Optimizer AdamW
LR 0.0005

Layer Decay 0.5
Momentum 0.9

Weight Decay 0.0005
Batch Size 64

Iteration Number 20480
Weak Augmentation RandomCrop

RandomHorizontalFlip
Strong Augmentation RandomCropInterpolation

RandomHorizontalFlip
RandAug (AutoContrast,

Brightness, Color,
Contrast, Equalize,

Identity, Posterize, Rotate,
Sharpness, ShearX,
ShearY, Solarize,

TranslateX, TranslateY)

Table 3. The list of experimental settings.

Theoretical Proof(Appendix B)
In Section 3.3 of the original paper, we conducted a theo-
retical analysis and here elaborate on the derivation process

1https://www.github.com/microsoft/Semi-supervised-learning

from Equation 5 to Equation 10 in detail.
1. From Equation 4 to Equation 5.
Equation 4:
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Equation 5:∑

(x,y)∈U∗

ℓ(x, y; fD)−
∑

(x,ŷ)∈U
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Proof. Equation 5 represents the simplified semi-
supervised error , which is derived from the last line of
Equation 4.
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Here, D/L denotes the dataset obtained by removing L
from D.

2. From Equation 5 to Equation 6.
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Equation 6:∑
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P(xw, k;D) · M(xs, k;D). (24)

Proof. We introduce the cross-entropy loss function and
adopt both strong augmentations A and weak augmenta-
tions α, denoting A(x) and α(x) as xs and xw. Conse-



quently, we can derive:
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(x,ŷ)∈U

ℓ(x, ŷ; fD)|
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Here P(xw, k;D) = |I(y = k) − I(hD(xw) = k)| is
termed the pseudo error, and M(xs, k;D) = f
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3. Equation 8.
Equation 8:
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Proof. Next, we will conduct a detailed derivation of the
“pseudo error” term P(xw, k;D).
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The notation (a) in the above equation refers to the inference
presented in the study [1]. And this reasoning has also been
adopted and utilized by other research studies[2, 3]. Assum-
ing that the higher the feature similarity between samples,

the greater the probability that they belong to the same cat-
egory, we can derive two conclusions from the above equa-
tion based on this assumption:∑
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From this, we can infer that the “pseudo error” P(xw, k;D)
is negatively correlated with sim(zuj , z

l
∗), meaning that

as the similarity increases, the “pseudo error” decreases.
Therefore, P(xw, k;D) ∝ (1− sim(zuj , z
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4. Equation 10.
Equation 10:∑
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Proof. In this section, we will conduct a detailed deriva-
tion of the “margin error” M(xs, k;D):∑
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where f (max)
D (xs) represents the network output for the pre-

dicted class under the strong augmentation hD(xs). In the
semi-supervised learning framework, as the training pro-
cess progresses, the prediction results under strong and
weak augmented views gradually converge to consistency
(hD(xs) = hD(xw)). Consequently, the Equation 32 can
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where ŷ is the predicted category on weak augmentation
(hD(xw)). The semi-supervised error can be formulated as:
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In this scenario, we can divide it into two cases for han-
dling: The first case is when hD(xw) equals true label y, in
which case I(y = k) − I(hD(xw) = k) = 0, and we need
not consider the margin error anymore. The second case is
when hD(xw) is not equal to y, at which point Equation 34
can be simplified as:∑

k∈Y

P(xw, k;D) · M(xs, k;D)

=f
(max)
D (xs)− f

(y)
D (xs) + f

(max)
D (xs)− f

(ŷ)
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In other words, the margin error is closely related to the
output boundary value between the predicted class and the
true class under strong augmentation. To reduce the margin
error across the entire dataset, we need to identify the sam-
ple x∗ with the largest boundary values from the unlabeled
dataset:

x∗ = argmax
x∈U

f
(ŷ)
D (xs)− f

(y)
D (xs). (36)
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