
Towards Precise Scaling Laws for Video Diffusion Transformers

Supplementary Material

A. Experimental Settings and Main Results
A.1. Models
In our experiments, we employ the Cross-DiT architecture [7],
an efficient diffusion transformer model that incorporates cross-
attention module to integrate text conditions. This architecture
is optimized for high-quality image/video generation at reduced
computational costs. Our model setup includes:
• VAE[68] for encoding, PixArt-XL-2-512x512 [7] for initializ-

ing, and T5 for text encoding.
• Input sequences of 17 frames with a resolution of 256x256.

A.2. Datasets
We utilize the Panda-70M dataset [9]. A test subset of 2000 sam-
ples is randomly selected for validation.

A.3. Main Results
We summarize the key results of our video diffusion transform-
ers. Firstly, the fitting results for the optimal hyperparameters (i.e.,
learning rate and batch size) across different model sizes and train-
ing tokens are:

Bopt = ↵BT
�BN

�B (15)

⌘opt = ↵⌘T
�⌘

N
�⌘ (16)

Parameter for Bopt ↵B �B �B

Value 2.1797⇥ 104 0.8080 0.1906
Parameter for ⌘opt ↵⌘ �⌘ �⌘

Value 0.0002 -0.0453 -0.1619

Table 3. Fitting results for Bopt and ⌘opt

The constant term ↵B = 2.1797 ⇥ 104 predicts tokens per
batch. In our experiments, ↵B = 17.0287 for samples, with ex-
ponents unchanged.

Based on the optimal learning rate, we fit the validation loss for
any model size and training tokens (Table 4).

L(T,N) =

✓
Tc

T

◆
↵T

+

✓
Nc

N

◆
↵N

+ L1 (17)

Parameter Tc ↵T Nc ↵N L1

Value 0.0373 0.2917 0.0082 0.3188 0.4856

Table 4. Fitting results for L(T,N)

The optimal model size and training tokens for a fixed compute
budget are given by:

Nopt = 0.8705 · C0.4294 (18)

Topt =
4

3
�
7 + nctx

d

� · C0.5706 (19)

B. Proof of Key Results

B.1. Upper Bound of Stochastic Gradient

We approximate its gradient using the stochastic function. At iter-
ation k, we randomly sample a mini-batch of data {⇠(b)

k
}Bb=1 from

the training data distribution ⇢. Using these samples, we compute
an estimated gradient gk as:

gk =
1
B

BX

b=1

Gest(✓k; ⇠
(b)
k

) (20)

where ⇠
(b)
k

⇠ ⇢ represents a random data sampled from a distri-
bution ⇢ at iteration k and Gest(✓k; ⇠

(b)
k

) is the stochastic gradient
estimate for a single sample ⇠

(b)
k

.

Let GB

k = {✓k, {⇠(b)k�1}
B

b=1, ✓k�1, {⇠(b)k�2}
B

b=1, . . . , ✓0} repre-
sent the filtration containing all historical variables at and before
iteration k. Following [40], we assume the estimated gradient is
an unbiased estimate of the true gradient, while the variance of the
estimated gradient is bounded:

E⇠k⇠⇢[gk | GB

k] = G(✓k) (21)

E⇠k⇠⇢[kgk �G(✓k)k2 | GB

k]  �
2
B =

�
2

B
(22)

The assumptions indicates that, the stochastic gradient gk is an
unbiased estimate of G(✓k), and the variance is bounded by �

2
B .

Using these two assumptions we get:

E[kgkk2 | GB

k]

= E[kgk �G(✓k) +G(✓k)k2 | GB

k]

= kG(✓k)k2 + E[kgk �G(✓k)k2 | GB

k]

 kG(✓k)k2 + �
2
B (23)

where the second equality holds due to Equation (21) and the last
inequality holds due to Equation (22).

(a) Performance scaling curve fitted on four small model scales. (b) Performance scaling curve extrapolated to larger models.

Figure 8. Loss scaling with fixed suboptimal hyperparameters across varying model and compute scales. Left: Fitted loss curves under
fixed suboptimal hyperparameters across four smaller models, each trained with varying numbers of tokens. Right: Extrapolated loss
curves extended to larger model scales and compute budgets. The red pentagram indicates the projected loss for a 1.07B model with 10B
training tokens, experimental results are shown as green hexagons.

B.2. Convergence Rate of Mini-Batch SGD
Since L(✓k) is L-smooth ,we have

E[L(✓k+1) | GB

k]

 L(✓k) + E[hG(✓k), ✓k+1 � ✓ki | GB

k]

+
L

2
E[k✓k+1 � ✓kk2 | GB

k]

= L(✓k)� ⌘E[hG(✓k), gki | GB

k]

+
L⌘

2

2
E[kgkk2 | GB

k]

 L(✓k)� ⌘

✓
1� L⌘

2

◆
kG(✓k)k2 +

L⌘
2
�
2
B

2

 L(✓k)�
⌘

2
kG(✓k)k2 +

L⌘
2
�
2
B

2
(24)

By taking expectations over the filtration GB

k , we have

E[L(✓k+1)]  E[L(✓k)]�
⌘

2
E[kG(✓k)k2] +

L⌘
2
�
2
B

2
(25)

This is equivalent to

E[kG(✓k)k2] 
2
⌘
(E[L(✓k)]� E[L(✓k+1)]) + L⌘�

2
B (26)

Taking the average over k = 0, 1, . . . ,K, we have

1
K + 1

KX

k=0

E[kG(✓k)k2] 
2(L(✓0)� L

?)
⌘(K + 1)

+ L⌘�
2
B (27)

as required in the main text.

B.3. Stepwise Loss of Mini-Batch SGD
We approximate G(✓k) using a batch of B samples:

gk =
1
B

BX

b=1

Gest(✓k, ⇠
(b)
k

) , ⇠
(b)
k

⇠ ⇢ (28)

Following [40], the estimated gradient is unbiased, and its variance
decreases inversely with the batch size B.

With the Hessian matrix Hk representing the second deriva-
tives of L(✓k) with respect to ✓k, the change in loss is approxi-
mately:

L(✓k � ⌘gk) ⇡ L(✓k)� ⌘G(✓k)
>
gk +

1
2
⌘
2
g
>
k Hkgk (29)

To obtain a more stable estimate, we compute the expectation over
multiple updates:

E [L(✓k � ⌘gk)] ⇡ L(✓k)� ⌘kG(✓k)k2 (30)

+
1
2
⌘
2

✓
G(✓k)

>
HkG(✓k) +

tr(Hk⌃k)
B

◆

This allows us to express the expected loss change per update step
as follows:

�Lk = E [L(✓k � ⌘gk)]� L(✓k) (31)

⇡ �⌘kG(✓k)k2 +
1
2
⌘
2

✓
G(✓k)

>
HkG(✓k) +

tr(Hk⌃k)
B

◆

C. Experimental Conclusions with Fixed Sub-
optimal Hyperparameters

To demonstrate that using optimal hyperparameters can yield more
accurate and robust performance predictions, we simply fixed the
parameters at B = 128, ⌘ = 2.5313⇥ 10�4.

L(T,N) =

✓
Tc

T

◆
↵T

+

✓
Nc

N

◆
↵N

+ L1 (32)

We used the same hyperparameters as in the fitting experiment
to test the 1.07B model on 10B training tokens (Figure 8b).

(a) Empirical Loss vs. N (b) Predicted Loss vs. N (c) Optimal model scaling

Figure 9. Empirical and predicted optimal model size on fixed suboptimal batch size and learning rate. Left: Empirical loss as a function
of model size N for various compute budgets C, with a parabolic fit to identify minimum loss points. Middle: Predicted loss across
model sizes, using Equation (36) to predict loss for different values of N . Right: Optimal model scaling with compute budgets, comparing
empirical results (circles) and predicted results (triangles), confirming the accuracy of Equation (36) for predicting the optimal model size.

Operation Parameters FLOPs
Self-Attention:QKV 3nlayerd

2 2nlayer3d2

Self-Attention:No Mask – 4nlayernctxd

Self-Attention:Project nlayerd
2 2nlayerd

2

Cross-Attention:Q nlayerd
2 2nlayerd

2

Cross-Attention:KV 2nlayerd
2 2nlayer2(ntext/nctx)d2

Cross-Attention:No Mask – 4nlayerntextd

Cross-Attention:Project nlayerd
2 2nlayerd

2

FeedForward(SwiGLU) nlayer3ddff = nlayer8d2 16nlayerd
2

Total 16nlayerd
2

C = 3Cforward = 3 ⇤ (7+nctx/d

4 N)

Table 5. Parameter counts and compute estimates for the Cross-DiT model. The input dimensions are f ⇥ h ⇥ w, where f is the number
of frames, and h and w are the height and width of each frame, respectively. To ensure consistency across models of varying sizes, we
maintain proportional scaling in both model width (d) and depth (nlayer), with d/nlayer = 128 and the number of attention heads equal to
the number of layers.

Parameter Tc ↵T Nc ↵N L1
Value 0.0541 0.2515 0.0052 0.4101 0.4783

Table 6. Fitting results for L(T,N) on fixed suboptimal hyperpa-
rameters

To evaluate the model’s fitting performance on the data points,
we calculate the mean squared error (MSE) Equation (33) between
the fitted values and the actual data points.

MSE =
1
n

nX

i=1

(yi � ŷi)
2 (33)

With fixed hyperparameters, the MSE of the fitted results is
4.31 ⇥ 10�7, while using optimal hyperparameters reduces it to
2.35 ⇥ 10�7, a 45.5% improvement. This means the optimal
hyperparameters are more effective for accurately capturing the
model’s power-law performance.

To explore the relationship between optimal model size and
compute budget, we fixed the compute budget to get the IsoFLOPs
curve from Equation (36) and validated it through experiments
(Figure 9).

N̂opt = 9.5521 · C0.3643 (34)

Nopt = 0.0130 · C0.5224 (35)

Equation (34) differs from Equation (35) by an absolute error
of 0.1581, or 30.26%, indicating a significant discrepancy, larger
than the one observed in the fitting results under optimal hyper-
parameters. This discrepancy stems from the poor fit of Equa-
tion (36), particularly for lower compute budgets.

D. Parameters and Compute
Based on the Diffusion Transformer (DiT) [43], Cross-DiT ar-
chitecture incorporate cross-attention modules to inject text con-
ditions and streamline the computation-intensive class-condition
branch to improve efficiency [8].

To analyze the computational complexity of the CrossDiT
model, we consider the parameter counts and the number of
floating-point operations (FLOPs) required for a forward pass. Ta-
ble 5 summarizes the parameters and compute budget for each
operation within the architecture. These operations include self-
attention and cross-attention, as well as feed-forward layers im-

plemented with SwiGLU activation. The total compute cost C
is derived by summing the contributions from these components.
Notably, the total parameter count scales with the number of lay-
ers (nlayer) and the model width (d), ensuring proportional scaling
across models of varying sizes. For consistency, d/nlayer = 128,
and the number of attention heads is equal to nlayer.

E. Precise Scaling Laws in Image Generation
The image generation can be seen as a degraded version of video
generation, where the video frames are reduced to a single frame.
To demonstrate that our scaling law approach also applies to dif-
fusion transformer-based image generation, we conducted exper-
iments using the same setup as in video generation, but fixed the
number of generated frames to 1 for image generation.

Following the method in main text, we fit ⌘opt(N,T),
Bopt(N,T). The fitting results are:

Parameter for Bopt ↵B �B �B

Value 5.6624⇥ 104 0.1495 0.0378
Parameter for ⌘opt ↵⌘ �⌘ �⌘

Value 0.0001 -0.1868 -0.2396

Table 7. Fitting results for Bopt and ⌘opt for image generation

Then, based on the optimal hyperparameters, we get the result
of L(N,T).

L(T,N) =

✓
Tc

T

◆
↵T

+

✓
Nc

N

◆
↵N

+ L1 (36)

Parameter Tc ↵T Nc ↵N L1
Value 0.0235 0.4183 0.0039 0.2935 0.6183

Table 8. Fitting results for L(T,N) for image generation

We extrapolated the model size to 1.07B and trained with 2B
training tokens. The predicted loss was 0.6414, the actual loss
was 0.6340, resulting in an error of 1.167%, which can also make
accurate predictions for image generation.

	. Introduction
	. Setup
	. Predicting Optimal Hyperparameters
	. Impact of model size on hyperparameters
	. Proposed Bopt(N,T) equation
	. Proposed opt(N,T) equation
	. Results of optimal hyperparameters

	. Scaling Law in Video DiT with Optimal Hyperparameters
	. Scaling law for optimal model size
	. Scaling law for performance
	. Uncovering the advantages
	More parameter-efficient model sizes
	More precise validation loss predictions

	. Related Work
	. Conclusion, Limitation and Future Work
	. Experimental Settings and Main Results
	. Models
	. Datasets
	. Main Results

	. Proof of Key Results
	. Upper Bound of Stochastic Gradient
	. Convergence Rate of Mini-Batch SGD
	. Stepwise Loss of Mini-Batch SGD

	. Experimental Conclusions with Fixed Suboptimal Hyperparameters
	. Parameters and Compute
	. Precise Scaling Laws in Image Generation

