
Stop learning it all to mitigate visual hallucination,
Focus on the hallucination target.

Supplementary Material

A. Side Effects of Preference Learning
Here, we observe changes in the attention map to evaluate
the side-effect of preference learning on mitigating halluci-
nations. Details in figure 5.

B. Proof of Theory
Lemma 1. Given a reward function r(x, y), assuming As-
sumption 3.1, we can establish the equivalence between the
Bradley-Terry model to the 2.2.

Proof. We need to show that under Assumption 1, the tra-
ditional Bradley-Terry model applied to the full response is
equivalent to Equation 2.2 (our assumed equation) applied
to the target chunks. 1. Traditional Bradley-Terry Model
(Applied to Full Response)

P (yr ≻ yh | x) = σ(r(x, yr)− r(x, yh))

Where, yr is the revised full response, yhl is the hallu-
cinated full response, r(x, y) is the reward for the full re-
sponse y given input x.

We are given that
∑

rt =
∑

r. In our case, this means:

r(x, yr) = rt(x, y
t
r), r(x, yh) = rt(x, y

t
h)

This is because Assumption 3.1 states that the reward
difference is entirely contained within the target chunks.

Substituting the values from step 2 into the traditional
Bradley-Terry model, we get:

P (yr ≻ yh | x) = σ(rt(x, y
t
r)− rt(x, y

t
h))

This is exactly the same as Equation 2.2 (our assumed
equation):

P (ytr ≻ yth | x) = σ(rt(x, y
t
r)− rt(x, y

t
h))

Theorem 1. Under Assumption 3.1, preference learning re-
mains equivalent when non-target tokens are excluded.

Proof. We need to show that:

Ey ∼ πθ[r(x, y)] = Eyt ∼ πθ[r(x, y
t)]

Left-hand side (Original RLHF): Ey ∼ πθ[r(x, y)] This
represents the expected reward over all possible responses
y generated by the policy πθ given the input x.

Right-hand side (Target-restricted RLHF):
Eyt ∼ πθ[r(x, y

t)] This represents the expected re-
ward over all possible target chunks yt generated by the
policy πθ given the input x.

Assumption 3.1 states that
∑

rt =
∑

r. In the context
of expected values, this implies:

r(x, y) = r(x, yt)

for any response y and its corresponding target chunks yt.
Therefore:

Ey ∼ πθ[r(x, y)] = Ey ∼ πθ[r(x, y
t)]

Since the reward function only considers the target
chunks yt due to Assumption 3.1, we can replace the expec-
tation over all responses y with the expectation over target
chunks yt without changing the value:

Ey ∼ πθ[r(x, y
t)] = Eyt ∼ πθ[r(x, y

t)]

Thus:

Ey ∼ πθ[r(x, y)] = Eyt ∼ πθ[r(x, y
t)]

This proves the equivalence of the expected rewards.

We also need to show that the policy gradient update for
target-restricted RLHF follows the same form as for the
original RLHF.

Original RLHF Gradient Update:

∇θEy∼πθ
[r(x, y)− βDKL(πθ|πref)]

Target-restricted RLHF Gradient Update:

∇θEyt∼πθ

[
r(x, yt)− βDKL(πθ|πref)

]
Since we have already established that

Ey ∼ πθ[r(x, y)] = Eyt ∼ πθ[r(x, y
t)], we can sub-

stitute this into the original RLHF gradient update:

∇θEy∼πθ
[r(x, y)− βDKL(πθ|πref)] =

∇θEyt∼πθ
[r(x, yt)− βDKL(πθ|πref)]

(7.1)



This shows that the policy gradient updates for the orig-
inal RLHF and target-restricted RLHF are the same under
Assumption 3.1.

As previously proven, under Assumption 3.1, since
r(x, y) = r(x, yt) , we can replace each response pair
(yr, yh) in the preference dataset D with the corresponding
target chunks (ytr, y

t
h). Therefore, the objective function of

the target-learning DPO is as follows:

LTL-DPO(θ) =

− E(x,yt
r,y

t
h)∼D

[
log σ

(
β log

πθ(y
t
r|x)

πref(ytr|x)
− β log

πθ(y
t
h|x)

πref(yth|x)

)]
(7.2)

In conclusion, we can see that the existing preference
learning method including RLHF, DPO can be applied in
the same way to target learning.

Proposition 1. Efficiency comparison in target learning
LetHpl andHtl be the hypothesis spaces to learning meth-
ods without target(pl) and with target(tl), respectively. The
number of samples required to achieve the same generaliza-
tion error ϵ and confidence level 1− δ satisfies mtl ≤ mpl.

Proof. Target learning restricts the problem by focusing on
a subset yt of the full output y. The functions in Htl only
need to discriminate based on variations within yt. In con-
trast, functions inHpl must accommodate variations across
the entire y. Since yt represents a smaller, more specific
part of the output space compared to y, the class of func-
tions needed to model preferences over yt (Htl) is inher-
ently less complex than the class needed for y (Hpl). While
any preference function in Htl can be represented within
Hpl (by ignoring non-target parts), Hpl must also contain
functions sensitive to variations outside yt, which are ex-
plicitly excluded from consideration in Htl. Therefore, the
complexity ofHtl is strictly less than that ofHpl:

VCD(Htl) < VCD(Hpl)

The strict inequality holds because Hpl needs the capac-
ity to model potential preference influences from non-target
parts, a capacity not required by or included inHtl.

Since the required sample complexity m increases
monotonically with the VC dimension for fixed ϵ and δ,
and we have established that VCD(Htl) < VCD(Hpl), it
follows directly that:

mtl < mpl

Thus, target-focused preference learning is theoretically
more sample-efficient than conventional preference learn-
ing for achieving the same generalization guarantees re-
garding the target phenomena.

C. Details about dataset construction
This section describes the processes used to construct the
dataset and the prompts employed during these processes.
The dataset construction consists of five main steps:
• Step 1. Extract images, question-answer pairs associated

with the images, and the bounding boxes of objects men-
tioned in the questions from the Visual Genome dataset.

• Step 2. Use a baseline model to generate responses to the
queries.

• Step 3. Compare the model’s responses with the answers
and filter out only the hallucinated responses that provide
incorrect answers.

• Step 4. Compare the images, questions, answers, and hal-
lucinated responses to correct the hallucinated responses
into accurate answers.

• Step 5. Compare the hallucinated responses with the re-
vised responses, and retain the revised positions in both
the hallucinated responses and revised responses as target
positions.

Finally, the dataset we constructed includes images, ques-
tions, hallucinated responses, revised responses, target po-
sitions, and bounding boxes. In Steps 3 and 4, the ChatGPT
model was employed to perform the following tasks:
• Prompt 1. Identifying correctness and errors in the

model’s responses (in Step 3)
• Prompt 2. Correcting the incorrect model responses (in

Step 4)
The prompts used in each step are listed in Table4, pro-
viding a comprehensive view of the data generation frame-
work. Examples are also included in the Figure 6.

D. Algorithms
The following (9) is the pseudocode for TL-DPO.

E. Qualitive Results
The following are the results of the qualitative analysis from
the hallucination benchmark dataset in figure 7.



Figure 5. Changes in the Attention Map According to Preference Learning

Figure 6. Examples of constructed datasets used in TL-DPO



Algorithm 1 TL-DPO

Require:
• D: Dataset composed of images m, text contexts x, target positions t, and bounding box b.
• πθ: Parameters of the multimodal language model (MLLM).
• πref: Parameters of the reference model.
• α, β1, β2: Hyperparameters.

1: Function Definitions:
• LABELTOTEXT(x, t):

– Labels non-target parts of the text context x to ignore.
– Truncates the labels after the target position t.
– Returns the modified labels of text context lt(x).

• TARGETNOISYMASKING(m, b):
– Applies a noisy mask to the image m at the regions specified by bounding box b.
– Returns the modified image m̃r

t .
2: Generate TL-DPO data and update D accordingly.
3: Initialize model parameters πθ.
4: for each epoch do
5: for each (m,x, t, b) ∈ D do
6: lt(x)← LABELTOTEXT(m, x, k, t) ▷ Labeling and truncation for LTL−DPO calculation
7: m̃t ← TARGETNOISYMASKING(m, b) ▷ Apply noisy masking to target object in image
8: Compute loss LTL−DPO using Equation (4.3)
9: Update πθ by minimizing LTL−DPO



Figure 7. Qualitative Evaluation of Hallucination Correction Performance



Table 4. Two types of prompts to GPT-4o (used in Step3, Step4)

Identifying correctness in the model’s responses:
Help me evaluate the correctness of the model’s responses by comparing them to the dataset’s Question-Answer pair.
*****************************************
Question-answer Pair:
Q: {question}
A: {answer}
Response:
R: {response}
Requirements:
(1) Compare the Response to the Question with the Answer and determine its correctness.
(2) Provide the result as either ”true” or ”false”.
*****************************************
Output Format:
Output: {your answer}

Prompts for revising hallucination tasks:
Requirements:
(1) Modify parts of the given incorrect response to make it a correct response.
(2) Compared to the original output, the modified response should be corrected based on the provided image and the correct
answer.
(3) Highlight the corrected parts by wrapping them with asterisks (e.g., corrected text).
***************************************** Output Format:
Revised answer: {your answer}


