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Supplementary Material

A. More Visualization of Token Routers

In Sec. 3.2, we provided an example visualization of the
router predictions to evaluate the effectiveness of our Dif-
fCR router. Here, we present additional visualization ex-
amples in Fig. 2 to further validate our findings. Our ob-
servations consistently demonstrate the following: (1) The
router effectively captures semantic information, clearly de-
lineating object shapes and achieving an attention-like ef-
fect while significantly reducing computational costs. (2)
The predicted token importance varies across layers and
timesteps. For example, some layers focus on object gener-
ation, while others emphasize background areas. Addition-
ally, as timesteps progress, the router increasingly captures
the semantic contours of objects, highlighting the impor-
tance of dynamic token importance estimation. (3) The op-
timal compression ratio differs across layers and timesteps.
For instance, some layers assign high importance to all to-
kens, indicating minimal redundancy, while others selec-
tively prune tokens from objects or backgrounds with dis-
tinct shapes, requiring different compression ratios. This
variance is also observed across timesteps. In the previ-
ous MoD [8] approach, a fixed global compression rate
is uniformly applied across layers and timesteps, ignor-
ing their individual significance. Such uniform pruning
risks over-pruning critical layers or timesteps while under-
compressing redundant ones. This observation underscores
the need for adaptive and dynamic compression ratios tai-
lored to both layers and timesteps.

B. Ratio Trajectory Analysis for the T2I Task

In Sec. 3.3, we visualized the ratio trajectory for inpainting
tasks trained with our proposed layer-wise DiffCR. Here,
we also provide the training trajectory of compression ra-
tios for all layers during fine-tuning of a PixArt-Σ model
on a T2I task, as shown in Fig. 1 (a-c). The visualization
consistently reveals that: (1) Each layer learns its unique
compression ratio, with redundant layers achieving higher
compression and critical layers remaining less or entirely
uncompressed; (2) The average ratio across layers gradually
converges to the target ratio. In this example, with a target
of 20%, the final achieved average ratio is approximately
19%, indicating a minor gap. Notably, a trade-off exists be-
tween convergence speed and generation quality: a higher
MSE loss coefficient for the ratio accelerates convergence
but may degrade quality due to overly rapid compression,
while a smaller coefficient promotes gradual convergence

Figure 1. Visualization of the compression ratio trajectory during
fine-tuning for a T2I task: (a) Trajectories for each of the 28 lay-
ers in the PixArt-Σ model; (b) Average ratio trajectory across all
layers; and (c) The final learned ratio distribution across 28 layers.

and maintains quality, albeit with slower training. In prac-
tice, we set the initial coefficient to 0.3 and dynamically
adjust it during training to balance speed and quality ef-
fectively; (3) The middle layers exhibit greater redundancy,
while the later layers generally have lower redundancy and
often cannot be compressed. The early layers show variable
redundancy levels.

Note that to prevent the model from learning 0% com-
pression ratios across all layers, we balance diffusion loss
(favoring lower ratios for higher quality) and MSE loss
(driving the target average ratio) using a coefficient, without
additional regularization or penalties. A higher coefficient
speeds up convergence but may compromise quality, while
a smaller one ensures gradual convergence and preserves
quality. Some layers naturally learn 0% ratios, underscor-
ing their importance.

C. Correlation Between Learned Compression
Ratios and Router Predictions

We select three representative layers with high, medium,
and low learned compression ratios to visualize the corre-
sponding predictions of the DiffCR router and analyze po-
tential correlations. As shown in Fig. 3, where “C.R.” de-
notes the compression ratios, we observe a strong correla-
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Figure 2. More visualizations of the router’s predictions: (a) For inpainting tasks, where inputs are masked images with text prompts, we
follow the previous SOTA method Lazy-Diffusion [7] to generate only the masked area rather than the entire image; (b) For text-to-image
(T2I) tasks, where inputs are noise and text prompts, we follow PixArt-Σ [2] for generation. Each visualization includes the router’s
prediction map with values ranging from 0 to 1. The generated image at each corresponding timestep is shown on the left, while the
router’s prediction maps across various layers and timesteps are displayed on the right.
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Figure 3. Visualization and analysis of the correlation between the learned compression ratios and the DiffCR router’s predictions.
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Figure 4. Overall comparison of DiffCR with baselines in terms of latency, FID, and TFLOPS for both T2I and inpainting tasks.

tion between the learned ratios and the router’s predictions.
For layers with high compression ratios, such as layer 1 in
inpainting or layer 9 in T2I, the router consistently predicts
lower importance scores for many semantic areas, adopting
an extremely “lazy behavior” to save computations. Con-
versely, for layers with low compression ratios, the router
assigns higher importance scores to most areas. This vi-
sualization validates the joint learning effect between our
token-level routers and the differentiable ratios.

D. Trade-offs for Choosing Timestep Regions
In Sec. 3.4, we introduced the timestep-wise DiffCR, where
the timestep regions are evenly divided into 10 regions for
inpainting tasks with a total of 100 sampling timesteps, and
4 regions for T2I tasks with 20 sampling timesteps. Here,
we provide additional guidance on selecting the number of
timestep regions and the associated trade-offs. A larger
number of timestep regions allows for learning finer-grained
and more precise compression ratios across all timesteps.

However, too many regions can make training unstable and
challenging. To reduce training complexity and enhance
stability, we select a smaller number of regions, such as 4
for T2I tasks. Conversely, using too few regions risks over-
simplifying the method, reducing it to heuristic approaches
like SpeeD [10], which manually defines three timestep re-
gions. In practice, we choose between 4 and 10 timestep
regions to balance granularity and stability. While our ap-
proach aligns with the general insights of SpeeD, it is more
systematic and adaptive. Unlike manual exploration of a
large design space, our method efficiently handles a signif-
icantly greater number of regions in a principled manner,
balancing granularity and training stability.

E. Overall Comparison Figure
In Sec. 4.2, we presented a comprehensive comparison of
our DiffCR method against baseline approaches for both
inpainting and T2I tasks. Here, we provide the over-
all comparison figures to better illustrate the achieved im-
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Figure 5. Additional visual comparisons of our DiffCR with previous uncompressed models and SOTA compression methods: (a) Inpaint-
ing tasks, where DiffCR is applied to LD models [7], and (b) T2I tasks, where DiffCR is applied to PixArt-Σ [2].

provements in FID and latency reductions. As shown in
Fig. 4, our DiffCR consistently delivers superior trade-offs
between FID and latency, achieving FID reductions of 12.10
and 4.92 for T2I and inpainting tasks, respectively, at com-
parable GPU latency when compared to the most competi-
tive baseline.

F. Model Trajectories of DiffCR

In Sec. 4.2, we visualized the model trajectories during the
training of DiffCR-L for both T2I and inpainting tasks. This
revealed a key benefit: during fine-tuning, the averaged
compression ratios across all layers gradually converge to
the target ratio, producing a series of “by-product” mod-
els with varying compression ratios. Here, we also supply
the model trajectories of DiffCR-LT (“-LT” denotes layer-
and timestep-wise DiffCR). As shown in Fig. 6, we visu-
alize the FID scores and corresponding compression ratios
during the fine-tuning of DiffCR-LT. The observations con-
sistently validate the benefits of this approach, showing that
it enables the generation of a series of models with diverse
compression ratios. Also, we observe that inpainting tasks

(a) DiffCR-L (b) DiffCR-LT

Figure 6. Model trajectories of DiffCR.

and Latent Diffusion (LD) models [7] are more sensitive to
pruning and require longer fine-tuning to improve genera-
tion quality effectively, compared to T2I tasks. Moreover,
for T2I tasks, DiffCR-LT demonstrates slightly greater sta-
bility in model trajectory compared to DiffCR-L.

G. More Visualization of Visual Examples

In Sec. 4.4, we selected challenging input prompts to eval-
uate the qualitative performance of our proposed DiffCR.



Table 1. Characteristics of our method and caching-based baselines.

Method Model Skip / Cache Granulariy Learnable Token
Pruning

Timestep-wise
Feature Cache

DeepCache [12] U-Net Block Block ✗ ✗ ✓
CMYC [6] U-Net Block Block ✗ ✗ ✓
L2C [5] DiT Attn. & MLP Layer ✓ ✗ ✓
TGATE [4] DiT Attn. Layer ✗ ✗ ✓

DiffCR (Ours) DiT Attn. & MLP Token ✓ ✓ ✗ but compatible

Here, we provide additional visual examples, as shown in
Fig. 5. The examples consistently demonstrate that Dif-
fCR achieves comparable or even superior generation qual-
ity compared to the RegenerateCrop baseline and even un-
compressed LD or PixArt-Σ for inpainting and T2I tasks,
respectively. Note that ToMe [1] and AT-EDM [9] are omit-
ted here due to their poor generation quality when applied
to DiTs, even at a modest compression ratio of 10%.

H. Comparison with Caching-based Baselines

We summarize the characteristics of our method and
caching-based baselines in Tab. 1. DeepCache [12] and
CMYC [6] are designed for U-Net-based models, mak-
ing direct comparison challenging, while L2C [5] and
TGATE [4] target DiTs by caching layer features to re-
duce recomputation in future timesteps. Unlike these ap-
proaches, our method focuses on token pruning with learn-
able layer- and timestep-dependent compression ratios, and
while it does not employ temporal caching, it remains com-
patible with such techniques. To directly compare, we eval-
uate all methods using PixArt-Σ on the MS-COCO-30K
dataset (T2I task) under approximately 25% latency sav-
ings, where L2C achieves an FID of 28.6 (with our trained
routers reproducing a similar caching pattern as reported),
TGATE yields 43.6 FID, and our DiffCR achieves 28.6 FID.
These results show that our method performs comparably to
or better than caching-based baselines, and it can be further
combined with them to achieve an additional 15 ∼ 30% la-
tency reduction.

I. Human Preference Score for Inpainting

In Sec. 4.4, we utilized a computer vision model to esti-
mate likely human preferences and evaluate the ability of
models to generate high-quality, contextually relevant im-
ages for the T2I task. Here, we also provide the evaluation
for inpainting tasks. Specifically, we generated 2K sam-
ples for the inpainting task and used HPSv2 [11] to assess
human preferences for images produced by different meth-
ods. As shown in Tab. 2, for inpainting tasks, we applied all
compression methods to Lazy Diffusion (LD) [7]. DiffCR
achieves a higher human preference score of 2.181/0.263
compared to previous compression methods, ToMe [1] and

Table 2. Human Preference Score (HPS) (↑) comparison of the
proposed DiffCR with baselines for the inpainting task.

Methods DiT C.R. HPS Score
RegenerateImage 0% 21.056
RegenerateCrop 0% 19.466

Lazy Diffusion (LD) 0% 20.464
LD w/ ToMe 30% 18.187
LD w/ MoD 30% 20.105
LD w/ DiffCR 30% 20.368

Table 3. Ablation study on the impact of different compression
ratios with a batch size of 16.

Metrics\Ratios 0% 10% 30% 50% 70% 90%
FID Score (↓) 27.80 27.53 28.64 28.57 28.44 29.21

CLIP Score (↑) 16.23 16.28 16.44 16.37 16.37 16.37
T2I Latency (s) 11.90 11.16 10.31 9.23 8.19 7.12

vanilla MoD [8], respectively.

J. Ablation Analysis on Compression Ratios
In this work, we target lower latency as a step toward edge
deployment. To analyze the effect of varying compression
ratios, we conducted an ablation study using the PixArt-Σ
model on the MS-COCO-30K dataset [3]. Notably, 1/3 of
the timesteps were allocated to full-model inference to pre-
serve accuracy. The results in the table below show that our
method scales effectively to larger compression ratios, with
only a slight increase in FID (< 1). A 30% compression ra-
tio was previously selected for challenging generation tasks
to maintain accuracy while building upon existing state-of-
the-art efficient methods.

K. Is MSE Loss Alone Sufficient?
We found that simply using the MSE loss effectively guides
ratios toward the target without additional regularization, so
we fixed it to MSE loss, but other loss functions may also
work well. In addition, although we did not enforce binary
prediction, the routers tend to learn a polarized distribution
in some layers, separating important tokens from unimpor-
tant ones, with the learned ratios aligning accordingly, as
shown in Fig. 3.
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