RENO: Real-Time Neural Compression for 3D LiDAR Point Clouds

Supplementary Material

1. Overview

This appendix provides supplementary comparisons and
discussions to complement the manuscript. Section 2 com-
pares our approach with learning-based methods, while
Sec. 3 presents additional ablation studies. Implementation
details are discussed in Sec. 4, and more visualizations are
provided in Sec. 5. All experiments in this appendix are
conducted on an Intel Xeon Platinum 8352V CPU and one
RTX 4090 GPU.

2. Comparison with Learning-based Methods

In this section, we provide a detailed comparison of RENO
with representative learning-based methods: EHEM [5] and
Unicorn [7]. EHEM is recognized as the most promi-
nent and high-performing model among tree-based ap-
proaches [1-3, 5], while Unicorn exemplifies the latest and
most representative sparse tensor-based models [6, 7, 10].
Table 1 shows the rate distortion performance of differ-
ent methods, where RENO-L represents the large version
of RENO, which increases the number of channels from
32 to 128 and the kernel size from 3 to 5. Table 2 pro-
vides detailed encoding time for various methods applied
to 12-bit and 14-bit point clouds, where the first frame in
SemanticKITTI sequence 11 is used for test.

e It can be observed that EHEM demonstrates the high-
est rate-distortion performance (note that the BD-BR of
EHEM is directly cited from their paper and is presented
for reference only); however, this comes at the cost of
substantial time consumption. Its preprocessing stage de-
mands significantly more time to construct the tree and
prepare contextual information, ultimately undermining
its real-time applicability.

* In contrast, Unicorn performs inference directly within
the sparse tensor domain, effectively minimizing pre-
processing overhead. However, its reliance on the
upsampling-based inference framework results in a sub-
stantially prolonged neural network computation time.
While the inference speed of the network can be enhanced
using 1-stage inference, Unicorn! fails to achieve sub-
stantial speed improvements (as it still necessitates the in-
troduction of a large number of voxels via deconvolution)
and results in a significant degradation in performance.

3. Additional Ablation Study

CPU vs. GPU Arithmetic Coding. This paper em-
ploys a bitwise two-stage coding strategy to accelerate the

-40

EHEM
~-30 0 i Better
K 0 | ©Unicomn % RENO-L /,
gL Gpcc RENO %
0}
2 0l A Unicorn’
20
[2 4 6 8 10 12 14 16
Frames Per Second (FPS)
-40
EHEM
~ 30 {7 . Better
S @ Unicorn % RENO-L /
g0 Gpcc RENO %
0}
8 . AUnicorn’
20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Frames Per Second (FPS)

Figure 1. Comparison with the learning-based methods EHEM
and Unicorn. The encoding speeds are reported separately for
14-bit precision (top) and 12-bit precision (bottom). Unicorn
refers to the one-stage configuration of the Unicorn model. G-
PCC serves as the anchor.

Table 1. Rate-distortion comparison with learning-based meth-
ods on SemanticKITTI. BD-BR refers to the BD-BR gain over
G-PCCv23 in D1 metric. Unicorn' denotes the one-stage configu-
ration of the Unicorn model.

Method EHEM Unicorn Unicorn' RENO-L RENO
BD-BR (%) -28.89 -25.62 +6.56 -20.63 -12.47

Table 2. Encoding time comparison. Preprocessing (Prep), neural
network inference (NN), and arithmetic encoding (AE) time are
independently reported for detailed comparison. D refers to the
bit depth of reconstructed point clouds. For sparse tensor-based
methods (e.g., Unicorn, Unicorn', RENO-L, and RENO), the time
spent on dyadic downscaling is reported as preprocessing.

D=12 (s) D=14 (s)
Prep NN AE Total Prep NN AE Total

EHEM 0.463 0427 0.297 1187 1.796 1385 1233 4.414
Unicorn 0.003 0.565 0.030 0.598 0.003 0.772 0.074 0.849
Unicorn' 0.003 0.163 0.021 0.187 0.003 0.336 0.063 0.402
RENO-L 0.006 0.080 0.014 0.100 0.007 0.184 0.037 0.228
RENO 0.006 0.018 0.014 0.038 0.007 0.028 0.038 0.073

Method

arithmetic coding process, leveraging the Torchac' library,
which operates on the CPU. An alternative acceleration
strategy involves dividing symbols into packets for paral-
lel coding directly on the GPU, an approach implemented
in GPUAC”. Here, we performed ablation experiments for
both methods, and the results are shown in Tab. 3. It should

Thttps://github.com/fab-jul/torchac
Zhttps://github.com/zb12138/GPUAC

https://github.com/fab-jul/torchac
https://github.com/zb12138/GPUAC

Table 3. Comparison of arithmetic coding implementations. The
first frame in the SemanticKITTI sequence 11 is used for testing.
Encoding time for different bit depths D are reported.

D=12 D=14
Module Library - - . -
Time (s) Bitrate Time (s) Bitrate
One-Stage GPUAC 0.065 2.24 0.096 6.56

Two-Stage GPUAC 0.064 2.25 0.093 6.55

One-Stage Torchac 0.017 2.27 0.102 6.58
Two-Stage Torchac 0.014 2.28 0.038 6.57

be noted that an independent arithmetic encoding process is
conducted for each scale, and the reported time represents
the accumulated arithmetic encoding time across all scales.
The default packet size of 8192 is used when implementing
GPUAC. As observed, GPUAC provides a slight speedup
over the naive one-stage approach only at higher bitrates
(D=14); however, this performance improvement is consid-
erably inferior compared to the proposed bitwise decompo-
sition strategy. At lower bitrates (D=12), GPUAC performs
significantly slower, as the number of symbols is relatively
small, and the CPU is sufficiently capable of processing the
data with low latency.

4. Implementation Details

4.1. Detailed Network Structure

Figure 2 illustrates the neural network architecture and de-
tailed parameters employed by RENO. The model parame-
ters are shared across all point cloud scales.

4.2. Configuration of Comparative Methods

G-PCCv23’ is employed following the Common Test Con-
dition (CTC) recommended by the MPEG committee. For
KITTI point clouds, the coordinates are scaled by dividing
by 0.001, and the pos@) parameter is adjusted to achieve
different bitrates. After decoding, the reconstructed point
clouds are rescaled to the original coordinate system by
multiplying by 0.001. For Ford point clouds, as they are al-
ready quantized to 1 mm precision, the original coordinate
system is retained.

DracoPy* , utilizing Google’s Draco version 1.5.2,
is employed for compression in this study. Despite its
longevity, Draco remains a benchmark for real-time sce-
narios [4]. The compression level is maintained at its de-
fault setting of 1, while the quantization bits are adjusted to
achieve varying compression ratios.

R-PCC’ is considered as a baseline for range image-
based compression. The BZip2 compressor is employed for

3https://github.com/MPEGGroup/mpeg-pcc-tmc13
“https://github.com/seung-lab/DracoPy
Shttps://github.com/StevenWang30/R-PCC

Cd_l, Od—l

Embedding (255, 32)| |

Conv3d (32, 32, 3)

ResNetBlock

ResNetBlock

Feature Replicating

Position Deriving

Embedding (8, 32)

Convad (32, 32, 3)

ResNetBlock

Sd
ResNetBlock i

C",!F’i | Embedding (16, 32) I

| &

y
o

| softmax M softmax |

Po(ST) Po(S81S1)

Figure 2. Detailed network structure of the devised Target Occu-
pancy Predictor (TOP). “Conv3d” represents 3D sparse convolu-
tion, with parameters defined as (input channels, output channels,
kernel size); “Embedding” maps discrete variables according to
(dictionary size, vector dimension); “Linear” applies an affine lin-
ear transformation with parameters (input channels, output chan-
nels); “@” denotes element-wise addition.

the optimal compression rate, and varying compression ra-
tios are achieved by adjusting the accuracy parameter.

RTST® is employed as an additional range image-based
compression approach. Single-frame compression mode is
adopted, and the horizontal and vertical degree granulari-
ties are systematically varied to attain different compres-
sion ratios. Note that it is currently supports only the KITTI
dataset.

Remark. We observe a notable discrepancy between our
experimental results and those reported in the original R-
PCC paper [8], which reported markedly superior perfor-
mance of R-PCC over G-PCC. This divergence primarily
stems from methodological differences in PSNR computa-
tion. Specifically, the original implementation of R-PCC
(as verified through their GitHub repository) employs back-
projected geometry rather than original point cloud data

Shttps://github.com/horizon-research/Real-Time-Spatio-Temporal-
LiDAR-Point-Cloud-Compression

https://github.com/MPEGGroup/mpeg-pcc-tmc13
https://github.com/seung-lab/DracoPy
https://github.com/StevenWang30/R-PCC
https://github.com/horizon-research/Real-Time-Spatio-Temporal-LiDAR-Point-Cloud-Compression
https://github.com/horizon-research/Real-Time-Spatio-Temporal-LiDAR-Point-Cloud-Compression

Significant Distortion

R-PCC Pipeline

Figure 3. Ours (blue line) vs. R-PCC () PSNR eval-
uations. A point cloud from the KITTI dataset is utilized as an
exemplar. The setting of PSNR peak value is consistent at 59.70.

as ground truth, thereby circumventing projection-induced
distortions illustrated in Fig. 3. The projection distortion is
confirmed in both prior studies [9] and our experiments. In
contrast, our calculation is more reasonable and aligns with
prior arts.

4.3. Metrics

PSNR. The MPEG PCC quality measurement software ver-
sion 0.13.4 is used to report PSNR values. The peak values
are set to 59.70 for KITTTI point clouds and 30,000 for Ford
point clouds, following conventional practices [1, 2, 5].

Chamfer Distance. The Chamfer Distance in the Fig.
1 of the main manuscript serves as an auxiliary description
of point-level distortion. This metric is computed using the
following mathematical formulation, implemented accord-
ing to the Point Cloud Utils’:

n

1
chamfer (P, P») = o Z |x; — NN (z;, P2) |
n

i=1

1 m
+%;|%*NN(IJ‘,P1)\ 9]

where P1 = {z;};_, and P, = {z;}"_, refer to two point
cloud samples; NN (z, P) = argmin,,cp ||z — 2’| is the
nearest neighbor function.

5. More Subjective Results

More visualization results are provided in Fig. 4. As
seen from the leftmost column (D=12), RENO reconstructs
point cloud samples with shapes sufficient to distinguish ob-
ject categories at around 50 ms latency, differing mainly in
fine details. For 14-bit precision (D=14), it achieves real-
time reconstruction with details closely matching the origi-
nals.

References

[1] Chunyang Fu, Ge Li, Rui Song, Wei Gao, and Shan Liu. Oc-
tattention: Octree-based large-scale contexts model for point

https://fwilliams.info/point-cloud-utils/sections/shape_metrics/

(2]

(3]

(4]

(5]

(6]

(7]

8]

(9]

(10]

cloud compression. In Proceedings of the AAAI conference
on artificial intelligence, pages 625-633, 2022. 1, 3

Lila Huang, Shenlong Wang, Kelvin Wong, Jerry Liu,
and Raquel Urtasun. Octsqueeze: Octree-structured en-
tropy model for lidar compression. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 1313-1323, 2020. 3

Yiqi Jin, Ziyu Zhu, Tongda Xu, Yuhuan Lin, and Yan Wang.
Ecm-opcc: Efficient context model for octree-based point
cloud compression. In ICASSP 2024-2024 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 7985-7989. IEEE, 2024. |

Zhicheng Liang et al. Fumos: Neural compression and pro-
gressive refinement for continuous point cloud video stream-
ing. I[EEE TVCG, 2024. 2

Rui Song, Chunyang Fu, Shan Liu, and Ge Li. Efficient hier-
archical entropy model for learned point cloud compression.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14368-14377, 2023.
1,3

Jiangiang Wang, Dandan Ding, Zhu Li, Xiaoxing Feng,
Chuntong Cao, and Zhan Ma. Sparse tensor-based multi-
scale representation for point cloud geometry compression.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 45(7):9055-9071, 2022. 1

Jiangiang Wang, Ruixiang Xue, Jiaxin Li, Dandan Ding, Yi
Lin, and Zhan Ma. A versatile point cloud compressor using
universal multiscale conditional coding — part i: Geometry.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, pages 1-18, 2024. 1

Sukai Wang, Jianhao Jiao, Peide Cai, and Lujia Wang. R-
pce: A baseline for range image-based point cloud compres-
sion. In 2022 International Conference on Robotics and Au-
tomation (ICRA), pages 10055-10061. IEEE, 2022. 2

Tao Wu, Hao Fu, Bokai Liu, Hanzhang Xue, Ruike Ren, and
Zhiming Tu. Detailed analysis on generating the range image
for lidar point cloud processing. Electronics, 10(11):1224,
2021. 3

Ruixiang Xue, Jiangiang Wang, and Zhan Ma. Efficient lidar
point cloud geometry compression through neighborhood
point attention. arXiv preprint arXiv:2208.12573, 2022. 1

https://fwilliams.info/point-cloud-utils/sections/shape_metrics/

RENO (D=14) Ground Truth

RENO (D=12) RENO (D=13)

182dB 6.876 / 82.073dB

2.687 / 70.154dB 4.559 / 76.
43ms / 40ms 59ms / 58ms 79ms / 77ms

Bpp / D1 PSNR
Enc Time / Dec Time

6.693 / 82.094dB

2.276 / 70.210dB
69ms / 74ms

39ms / 36ms

/ 82.078dB Bpp / D1 PSNR

5.896 / 76.163dB 8.421
Enc Time / Dec Time

73ms / 68ms 85ms / 90ms

W —— TSV
7.740 / 82.097dB
78ms / 78ms

5.325/ 76.184dB
60ms / 62ms

7.922 / 82.091dB Bpp / D1 PSNR

5.491 / 76.190dB
65ms / 65ms

3.571/70.193dB
Enc Time / Dec Time

47ms / 50ms
Figure 4. Visualization of compression results for KITTI point cloud. The reconstruction results of RENO under bit depths (D) of 12, 13,

88ms / 84ms

and 14 are presented.

	Overview
	Comparison with Learning-based Methods
	Additional Ablation Study
	Implementation Details
	Detailed Network Structure
	Configuration of Comparative Methods
	Metrics

	More Subjective Results

