
Appendix

A. Overview
This Appendix is structured as follows. First, more method-
ology details are described in Appendix B, followed by
more ablation studies and qualitative results in Appendix C.
Then, some extensions are illustrated in Appendix D. Fi-
nally, we discuss the limitations in Appendix E.

B. More Details
B.1. Details of Dataset Construction
Special designs for PIPAL dataset. The PIPAL dataset is
annotated using pair-wise comparisons and Elo ratings, in-
stead of the conventional five-point standard rating. As a
result, variance information is not provided. To integrate
the PIPAL dataset into our training framework, we assign a
pseudo variance derived from other datasets. The statistics
of the other three training datasets are shown in Tab. A1.
Based on these statistics, we manually set the ratio of the
mean standard deviation (std) to the score range for the PI-
PAL dataset as 20%. The minimum and maximum scores
in the PIPAL dataset are 934.95 and 1835.99, respectively,
thus the pseudo std is set as 20% → (1835.99 ↑ 934.95) =
180.21. Note that all scores are normalized to [1,5] during
training, with the std / variance normalized accordingly.

Table A1. Statistics of score range and standard deviation (std).

Datasets KonIQ SPAQ KADID

score range (max - min) 2.91 91.67 3.93
mean std 0.57 13.93 0.86

mean std / score range 19.73% 15.20% 21.90%

Degradation to linear interpolation when the variance is
quite small. When the variance is extremely small, inte-
gration calculations can introduce errors. These errors can
lead to strange solutions when directly solving the two con-
straint conditions for post-adjustment, resulting in ω and ε
values that deviate significantly from 1 and 0, respectively.
Consequently, the adjusted “probabilities” can become sub-
stantially smaller than 0 or larger than 1, which is unreason-
able as the training label. Recall that the quality score, x, is
modeled as a Gaussian distribution, N (µ,ϑ2). To address
this chanllenge, when the variance is extremely small, we
approximate the probability density function, f(x), of the
score’s Gaussian distribution as a unit impulse function:

lim
ω→0

f(x) = ϖ(x↑ µ), (A1)

where ϖ(·) is the unit impulse function. In this case, the soft
label is calculated through linear interpolation between the
two nearest center points. Suppose that cj < µ ↓ cj+1, and

recall that d = cj+1 ↑ cj = 1, the soft label is obtained as:

pi =






cj+1 ↑ µ, if i = j,

µ↑ cj , if i = j + 1,

0, otherwise.
(A2)

According to the 3ϑ rule, nearly all samples fall within the
range [µ ↑ 3ϑ, µ + 3ϑ]. Thus, if 3ϑ is less than half of
the level interval, only the two nearest levels have non-zero
probabilities. This criterion provides a way to define the
threshold for small variance as 3ϑ ↓ d/2, which simplifies
to ϑ ↓ 0.17. To allow for a slightly relaxed threshold, the
threshold for small (normalized) variance is set to (0.2)2.

B.2. Details of Methodology
Model architecture. DeQA-Score adopts the architecture
of mPLUG-Owl2 [75], structured as follows. Specifically,
the input images and the question texts are first tokenized,
then fused, finally processed by the Large Language Model
(LLM) for response generation. (a) Tokenizing input im-
ages and texts. We use a pre-trained CLIP pre-trained ViT-
L/14 [49] as the image encoder to convert the input im-
ages into visual tokens, with each token having a channel
of 1024. The texts are tokenized into textual tokens using
the SentencePiece tokenizer [27], with each token having a
channel of 4096. To bridge the different embedding spaces
of visual and textual tokens, a trainable image abstractor,
which is a six-layer transformer network, is implemented to
map the vision tokens to the hidden dimension of the LLM,
which is 4096. The abstractor can also significantly reduce
the number of vision tokens to 64, relieving the computing
pressure. (b) Token fusion. We integrate the visual tokens
into pre-defined positions within the textual tokens as token
fusion. (c) Response generation using LLM. The fused to-
kens are fed into an LLM, which is LLaMA-2-7B [62], to
generate the final response. The LLM can be either LoRA-
tuned [22] or fully tuned, and their results are similar when
the vision components are trainable, as shown in Tab. A7.
Examples of dataset variation. As discussed in the main
paper, different IQA datasets have distinct distributions. To
illustrate this, we present six images sampled from various
IQA datasets in Fig. A1. Although these images share sim-
ilar mean quality scores (i.e., linearly normalized scores),
they exhibit significantly different visual quality.

B.3. Details of Training and Inference
Training Setup. The pre-trained weights of mPLUG-Owl2
are used for model initialization. The loss weighting term
is set to 0.05, bringing the two loss terms to roughly the
same scale. We adopt AdamW [23] as the optimizer, with
an initial learning rate of 2e-5 that gradually decays using a
cosine decay strategy. A warmup strategy is applied with a
warmup ratio of 0.03. Our model is trained with a batch size
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KonIQ, 2.94±0.71 SPAQ, 2.94±0.82

KADID, 2.94±0.96 TID2013, 2.94±0.05 CSIQ, 2.94±0.72

LIVE-Wild, 2.93±0.97

Figure A1. Examples of dataset variation. Images from different
IQA datasets have similar mean quality scores (i.e., linearly nor-
malized scores), but exhibit significantly different visual quality.
The image from KonIQ dataset has the best quality than others.

Table A2. Probability sum of the five levels when applying soft-
max function on all textual tokens.

Datasets KonIQ SPAQ KADID PIPAL LIVE-Wild AGIQA-3K

Prob. Sum 0.9998 0.9998 0.9996 0.9997 0.9997 0.9996

of 64 for 3 epochs. Both the vision encoder and abstractor
are trainable, and the LLM is fully tuned unless specified.
As shown in Tab. A7, LoRA-tuned LLM achieves compara-
ble performance to fully-tuned LLM, providing an alterna-
tive for scenarios with limited computation resources. Us-
ing 8 RTX A6000 GPUs, training on the KonIQ dataset is
completed in about 1.5 hours, while training on the KonIQ,
SPAQ, and KADID datasets takes around 4 hours.
Explanation of closed-set softmax during inference. In
the main paper, we follow Q-Align [70] by applying a
closed-set softmax on the five levels to compute the proba-
bilities ppred

i , thereby avoiding the influence of other textual
tokens. As shown in our statistics in Tab. A2, the probability
sum of the five levels after training is very close to 1, indi-
cating that the trained MLLM consistently predicts one of
the five levels. Thus, applying softmax over the five levels
or across all textual tokens yields nearly identical results.

C. More Results
Results of score distribution prediction with KL diver-
gence as metric. In Tab. 5, we provide the distribution pre-
diction results with JS divergence and Wasserstein distance
as metrics. Here we further add the KL divergence as met-
ric. The KL divergence between two Gaussian distributions,
p1 = N (µ1,ϑ2

1), p2 = N (µ2,ϑ2
2), is calculated as:

KL(p1||p2) = log(
ϑ2

ϑ1
) +

ϑ2
1 + (µ1 ↑ µ2)2

2ϑ2
2

↑ 1

2
. (A3)

The results are given in Tab. A3, where the KL divergence
of Q-Align is quite large. We explain this as follows. As

Table A3. Score distribution prediction results with KL diver-
gence between the predicted Gaussian distribution and the human
labeled Gaussian distribution as metric. Models are trained on
the KonIQ, SPAQ, and KADID datasets. DeQA-Score achieves
a much closer alignment with human annotations.

KonIQ SPAQ KADID LIVE-Wild AGIQA-3K

Q-Align [70] 109.039 2.329 1229.530 3.980 76.414
DeQA-Score 0.058 0.241 0.142 0.249 0.534

Table A4. Results on AI-generated images with PLCC / SRCC
metrics. The models are trained on KonIQ, SPAQ, and KADID.

AIGCIQA2023 AGIN AGIQA-1K AGIQA-3K
Q-Align [70] 0.809 / 0.783 0.655 / 0.615 0.650 / 0.442 0.788 / 0.733
DeQA-Score 0.826 / 0.799 0.674 / 0.626 0.715 / 0.514 0.808 / 0.745

in Figs. 6 and A3 to A5, Q-Align tends to predict a single
level token, bringing a quite small predicted variance. That
means, the first variance, ϑ2

1 in Eq. (A3), is quite small (↔
0), thus the KL divergence goes extremely large (↔ +↗).
Results on more AI-generated images. In the main pa-
per, we have included an IQA dataset with AI-generated
images, AGIQA-3K [30], for evaluation. Here we further
provide evaluation results on three additional AIGC datasets
including AIGCIQA2023 [65], AGIN [11], and AGIQA-
1K [90] in Tab. A4. Both Q-Align and our DeQA-Score
are trained on the KonIQ, SPAQ, and KADID datasets, and
then directly evaluated on these unseen AIGC datasets. Our
DeQA-Score consistently outperforms the baseline method.
More baselines on multi-dataset training. In the main
paper, we primarily compare with Q-Align. Here we
add the comparison results with more baselines includ-
ing LIQE [89] and Compare2Score [98] in Tab. A5. Our
DeQA-Score consistently outperforms these baselines.
Ablation studies on level number are conducted in
Tab. A6. The performance improves with moderately larger
level numbers (i.e., 6↘8), as discretization becomes more
accurate. However, the performance declines with much
larger level numbers (i.e., 10↘12), due to the increased dif-
ficulty in level prediction (more classification categories).
Ablation studies on training / fixing components are sum-
marized in Tab. A7. The vision encoder and abstractor can
be either fixed or trained, while the LLM can be LoRA-
tuned [22] or fully tuned. First, comparing #0 with #1, or #3
with #4, training the vision abstractor significantly enhances
performance. Second, similarly, from #1 to #2, or #4 to #5,
training the vision encoder also leads to performance im-
provements. This improvement may be attributed to the fact
that training either the vision encoder or abstractor helps
extract more relevant features for IQA. Third, comparing
#0 with #3, when the vision components are fixed, fully-
tuned LLM shows a substantial advantage over LoRA-tuned
LLM. Finally, from #1 to #4, or #2 to #5, when the vision
components are trainable, fully-tuned LLM demonstrates
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Table A5. Score regression results of co-training on multiple IQA datasets with the PLCC / SRCC metrics. The models are trained on
the KonIQ, SPAQ, and KADID datasets.

Methods KonIQ SPAQ KADID PIPAL LIVE-Wild AGIQA-3K TID2013 CSIQ

LIQE [89] 0.907 / 0.922 0.916 / 0.921 0.928 / 0.929 0.503 / 0.493 0.855 / 0.822 0.689 / 0.650 0.881 / 0.854 0.792 / 0.794
Compare2Score [98] 0.941 / 0.929 0.929 / 0.927 0.952 / 0.949 0.446 / 0.440 0.868 / 0.856 0.787 / 0.733 0.836 / 0.809 0.879 / 0.830

Q-Align [70] 0.945 / 0.938 0.933 / 0.931 0.935 / 0.934 0.409 / 0.420 0.887 / 0.883 0.788 / 0.733 0.829 / 0.808 0.876 / 0.845
DeQA-Score 0.957 / 0.944 0.938 / 0.934 0.955 / 0.953 0.495 / 0.496 0.900 / 0.887 0.808 / 0.745 0.852 / 0.820 0.900 / 0.857

Table A6. Ablation studies on level numbers with PLCC / SRCC metrics. We use numerical names (one / two / three / four / five / ...) as
level names because they are easy to extend to different numbers. The models are trained on the KonIQ, SPAQ, and KADID datasets.

Level Number KonIQ SPAQ KADID PIPAL LIVE-Wild AGIQA-3K TID2013 CSIQ

5 0.945 / 0.932 0.934 / 0.930 0.955 / 0.952 0.421 / 0.424 0.873 / 0.857 0.766 / 0.712 0.820 / 0.794 0.882 / 0.835
6 0.947 / 0.935 0.935 / 0.931 0.956 / 0.953 0.404 / 0.408 0.879 / 0.867 0.789 / 0.732 0.808 / 0.789 0.877 / 0.830
7 0.947 / 0.935 0.935 / 0.932 0.952 / 0.949 0.411 / 0.413 0.883 / 0.869 0.777 / 0.720 0.812 / 0.789 0.879 / 0.827
8 0.949 / 0.936 0.936 / 0.932 0.949 / 0.946 0.420 / 0.419 0.872 / 0.854 0.772 / 0.709 0.795 / 0.779 0.874 / 0.824

10 0.932 / 0.916 0.930 / 0.927 0.948 / 0.942 0.409 / 0.403 0.861 / 0.837 0.737 / 0.654 0.784 / 0.763 0.880 / 0.831
12 0.930 / 0.916 0.930 / 0.927 0.947 / 0.943 0.415 / 0.412 0.864 / 0.840 0.722 / 0.643 0.804 / 0.773 0.870 / 0.819

Table A7. Ablation studies on training / fixing various model components with PLCC / SRCC metrics. “Enc.” means vision encoder,
and “Abs.” represents vision abstractor. “LLM LoRA” or “LLM Full” represents the LLM is LoRA-tuned [22] or fully tuned. “✁” means
this component is trained. The models are trained on the KonIQ, SPAQ, and KADID datasets. The results show that training vision
encoder and abstractor significantly improves the performance. When vision encoder and abstractor are trained, fully-tuned LLM only
shows a slight advantage over LoRA-tuned LLM.

# Enc. Abs. LLM LoRA LLM Full KonIQ SPAQ KADID PIPAL LIVE-Wild AGIQA-3K TID2013 CSIQ

0 ✁ 0.826 / 0.797 0.871 / 0.867 0.814 / 0.803 0.440 / 0.427 0.728 / 0.695 0.804 / 0.750 0.740 / 0.692 0.818 / 0.751
1 ✁ ✁ 0.909 / 0.890 0.919 / 0.916 0.898 / 0.892 0.429 / 0.425 0.806 / 0.768 0.699 / 0.672 0.749 / 0.682 0.876 / 0.821
2 ✁ ✁ ✁ 0.955 / 0.942 0.938 / 0.934 0.953 / 0.950 0.479 / 0.473 0.898 / 0.884 0.810 / 0.756 0.849 / 0.824 0.900 / 0.861
3 ✁ 0.889 / 0.867 0.913 / 0.910 0.873 / 0.866 0.429 / 0.417 0.784 / 0.747 0.762 / 0.711 0.743 / 0.670 0.843 / 0.759
4 ✁ ✁ 0.911 / 0.893 0.920 / 0.916 0.905 / 0.899 0.439 / 0.429 0.819 / 0.781 0.764 / 0.705 0.765 / 0.699 0.878 / 0.820
5 ✁ ✁ ✁ 0.957 / 0.944 0.938 / 0.934 0.955 / 0.953 0.495 / 0.496 0.900 / 0.887 0.808 / 0.745 0.852 / 0.820 0.900 / 0.857

similar performance to LoRA-tuned LLM. This provides an
alternative if the computation resources are limited.
Qualitative results are provided in Figs. A3 to A5. Q-
Align, which is trained on one-hot labels, tends to predict a
single label, resulting in higher KL divergence. Our DeQA-
Score can predict the score distribution that aligns well with
human annotations under wide circumstances:
• Different categories of distortions, including in-the-wild

images with authentic distortions in Fig. A3, artificial dis-
tortions in Fig. A4, AI-generated images in Fig. A5.

• Multiple quality levels, such as, poor quality (Fig. A3f,
Fig. A4ah), fair quality (Fig. A3e, Fig. A4g), and high

quality (Fig. A3hj, Fig. A5c).
• Various image contents, including animals (Fig. A3e,

Fig. A4bd), humans (Fig. A3fg, Fig. A5ad), nature scenes

(Fig. A4agh), urban scenes (Fig. A3ch, Fig. A4f), indoor

scenes (Fig. A3abd), and sports (Fig. A3i, Fig. A4c).

D. Extensions
Score regression helps quality description. We investi-
gate whether score regression tasks can enhance general
low-level perception tasks, i.e., language-based quality de-
scription tasks. The low-level perception tasks are evaluated

on Q-Bench [68]. For score regression, we adopt the same
training techniques as in the main paper, and train the model
on the KonIQ, SPAQ, and KADID datasets. The low-level
perception tasks are trained using the next token prediction
paradigm, with Q-Instruct [69] as the training dataset. Q-
Instruct [69] has shown that co-training with or pre-training
on high-level tasks can improve performance on low-level
perception tasks. Similarly, we evaluate two strategies: (a)
co-training with score regression tasks, and (b) pre-training
on score regression tasks. Some questions in the Q-Instruct
dataset are quite similar to the questions of score regres-
sion, which may confuse the model. Therefore, we append
the questions of score regression with a specific suffix, “An-
swer the question with levels.”, to specify the task.

The experimental results are presented in Tab. A8. First,
comparing #0 with #3 & #4, both co-training with and pre-
training on score regression tasks consistently improve low-
level perception performance. Second, comparing #1 with
#3, or #2 with #4, the benefits from score regression tasks
are greater than those from high-level tasks, likely because
score regression is more closely related to low-level percep-
tion. Finally, from #3 to #4, pre-training on score regression
tasks achieves better results than co-training.
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Table A8. Low-level perception results on Q-Bench [68] of co-training with or pre-training on score regression tasks. The results of #0,
#1, and #2 are borrowed from [69]. Co-training with or pre-training on score regression tasks stably improves the performance.

# Method Yes / No What How Distortion Other IC Distortion IC Other Overall

0 From the scratch [69] 0.7218 0.5796 0.5619 0.5668 0.6921 0.5329 0.7265 0.6161
1 High-level co-training [69] 0.7564 0.6704 0.5903 0.7101 0.6528 0.6316 0.6980 0.6756
2 High-level pre-training [69] 0.7600 0.6504 0.6166 0.6595 0.6875 0.6546 0.7388 0.6796

3 Score co-training 0.7727 0.6615 0.6308 0.6965 0.6875 0.6349 0.7633 0.6925
4 Score pre-training 0.7927 0.7323 0.6410 0.7276 0.7060 0.6974 0.7837 0.7258

Table A9. Co-training with Q-Instruct [69] leads to an obvious reduction in score regression performance. Exploring better strategies
to combine language-based quality description tasks with score regression tasks is left as our future work.

KonIQ SPAQ KADID PIPAL LIVE-Wild AGIQA-3K TID2013 CSIQ

Co-training with Q-Instruct 0.916 / 0.926 0.870 / 0.816 0.812 / 0.810 0.286 / 0.289 0.825 / 0.812 0.778 / 0.732 0.680 / 0.656 0.798 / 0.790
Only score regression 0.957 / 0.944 0.938 / 0.934 0.955 / 0.953 0.495 / 0.496 0.900 / 0.887 0.808 / 0.745 0.852 / 0.820 0.900 / 0.857

goodfairpoorbad exce.goodfairpoorbad exce.

GT Rec

Figure A2. Illustration of discretization errors when the vari-
ance is quite small. A score distribution, N (3.5, 0.252), is dis-
cretized into a soft label, where both “fair” and “good” share a
probability of 0.5. However, the recovered distribution from this
soft label becomes N (3.5, 0.52), resulting in a larger variance and,
consequently, a flatter curve of the distribution density function.

Quality description harms score regression. Considering
the promising results in Tab. A8, we aim to explore whether
it is possible to co-train a model for both accurate score re-
gression and language-based quality description. We there-
fore evaluate the score regression results of the co-trained
model in Tab. A9. These preliminary results indicate that
co-training with the instruction-tuning dataset, Q-Instruct,
leads to a noticeable decrease in score regression. The rea-
son can be that, in quality description datasets, the words to
describe the quality levels are very diverse, greatly beyond
the pre-defined five levels for score regression. This may
confuse the model when predicting the level tokens.

E. Limitations and Future Works
Simple co-training with quality description cannot im-
prove score regression. As shown in Appendix D, score re-
gression tasks can enhance quality description results, while
co-training with quality description tasks reduces the score
regression performance. How to better co-train these two
tasks remains an open question. However, first, the perfor-
mance of the co-training model is still reasonable and higher
than many non-MLLM-based IQA methods. Second, with
the rapid development of MLLM-based quality description
research, better quality description datasets may help.

Our discretization introduces errors when the variance
is very small. While our discretization method effectively
handles most distributions, it still introduces errors in the
variance of the distribution when the variance is very small.
For instance, as shown in Fig. A2, a score distribution with
a small variance, N (3.5, 0.252), is discretized into a soft
label where both “fair” and “good” share a probability of
0.5. The recovered distribution from this soft label becomes
N (3.5, 0.52), resulting in a larger variance and a flatter
curve in the probability density function. However, samples
with extremely small variance are rare, e.g., only 0.29% of
samples in the KonIQ dataset have a variance smaller than
0.52. Thus, the overall influence of this issue is relatively
small. How to better preserve the distribution characteris-
tics during discretization for such cases is our future work.
High memory consumption. As our DeQA-Score is based
on an MLLM with 7B parameters, it requires 15.2G storage
space (in bfloat16 format) and 15.8G (batch size 1) / 23.0G
(batch size 64) CUDA memory for inference. Despite this,
it remains deployable on consumer GPUs like 4090, and the
memory consumption can be reduced through quantization.
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Figure A3. Qualitative results on in-the-wild IQA datasets, sampled from the KonIQ, SPAQ, and LIVE-Wild datasets.
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Evaluated Image Q-Align’s Prediction Our Prediction Evaluated Image Q-Align’s Prediction Our Prediction
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Figure A4. Qualitative results on IQA datasets with artificial distortions, sampled from the KADID and CSIQ datasets.

Evaluated Image Q-Align’s Prediction Our Prediction Evaluated Image Q-Align’s Prediction Our Prediction
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Figure A5. Qualitative results on IQA datasets with AI-generated images, sampled from the AGIQA-3K dataset.
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