
A1. Appendix

A1.1. Theoretical Details
Clarification on Parameter Settings To eliminate any po-

tential confusion, we formally clarify the parameter set-

tings:

1. The essential condition:

Vthr =
qthr

C

must be strictly satisfied for our theorems to hold.
2. The default value of V0 is:

V0 = (0.5qthr +bias)/C,

where bias is the bias term in a convolutional or linear

layer.

3. Unless explicitly stated otherwise, the default values for

the remaining parameters are:

S0 = 0, Smin = 0.

A1.1.1. Preliminaries
In this section, we describe the neuron dynamics and the

feed-forward network model used in our analysis. We in-

troduce the notations and mathematical formulations that

underpin the behavior of neurons within the network.

Neuron Dynamics. Each neuron in the network follows

the ST-BIF (Bipolar Integrate & Fire with Spike Tracer)

model. The neuron’s behavior is defined by the following

equations:

At each time step t, the neuron’s membrane potential V̂t

is updated based on the previous potential Vt−1 and the in-

put charges received from presynaptic neurons:

V̂t = Vt−1 + (
m∑
i=1

wi · qi,t)/C (A1)

Here C is the membrane capacitance, wi are the synaptic

weights, and qi,t are the input charges at time t from m
presynaptic neurons.

The neuron decides whether to emit a spike based on the

updated membrane potential V̂t, the threshold voltage Vthr,

and the previous spike tracer value St−1:

Θ(V̂t, Vthr, St−1) =

⎧⎪⎨
⎪⎩
1, if V̂t ≥ Vthr and St−1 < Smax

0, if 0 ≤ V̂t < Vthr

−1, if V̂t < 0 and St−1 > Smin

(A2)

where Smax and Smin are the upper and lower limits for the

spike tracer St.

The output charge of the neuron at time t depends on the

spike decision:

qoutt = qthr ·Θ(V̂t, Vthr, St−1), (A3)

where qthr is the threshold charge associated with a spike.

After determining the output, the membrane potential is

adjusted to account for the emitted charge, and the spike

tracer St is updated to record the neuron’s firing history:

Vt = V̂t−qoutt /C; St = St−1+Θ(V̂t, Vthr, St−1) (A4)

Feed-forward Network Model. The network is structured

as a feed-forward architecture with L layers, indexed from 0
(input layer) to L0 (output layer). The neurons in each layer

receive inputs from the previous layer and send outputs to

the next layer. There are no recurrent connections.

We use supersript (l) and subscript i to denote a quantity

of the i-th neuron at layer l. So the temporary potential

update of the i-th neuron at layer l can be expressed as:

V̂
(l)
i,t = V

(l)
i,t−1 + (

ml−1∑
j=1

q
(l−1),out
j,t · w(l)

j,i)/C (A5)

Notations. Here is a summary of mathematical notations

used in the proof:

• Threshold charge: qthr is the threshold charge for spik-

ing.

• Membrane capacitance: C is the membrane capaci-

tance.

• Input charge: qj0,t is the input charge at time t for input

neuron j0 (in layer 0).

• Layers (l): The network consists of multiple layers, with

neurons in layer l receiving inputs from neurons in layer

l − 1.

• Synaptic weight: w
(k+1)
jk,jk+1

is the synaptic weight from

neuron jk in layer k to neuron jk+1 in layer k + 1.

• Membraine potential: VT is the potential of neuron

membrane at time t.

• Total input charge: Qj0,T =
T∑

t=1
qinj0,t is the total input

charge by the input neuron j0.

• Input charges: qint =
∑m

i=1 wi qi,t is the input charges

received at time t.

• Total input charge for a neuron: Qin
T =

T∑
t=1

qint is the

total input charge from presynaptic neurons up to time

T . Note that w is timed here and the quantity should be

distinguished from Qj0,T by the superscript (·)in.

• Spike tracer: St is the spike tracer value at time t.
• Equilibrium Time: Teq is the time-step that neuron en-

ters equilibrium state.

• Clip: clip(x, αmin, αmax) is an operator that limits x be-

tween αmin and αmax.



• Round: round(x) rounds the input x to the nearest integer.

• Floor: floor(x) = �x� rounds the input x down to the

greatest integer less than or equal to x.

• QReLU: QReLU is a function that quantized ReLU(x)
and can take only m values at all, the precise expression

is QReLU(x) = α clip(round(x/α), 0,m − 1). Here

α and m are two parameters with the function which

can be adjusted. m is an integer. (Note that we have

QReLU(x) = α clip(�(x/α) + 0.5�, 0,m− 1).)
• ANN with Q-ReLU activation functions:

FQReLU(x; θ) represents the output of an ANN

with Q-ReLU activation functions, with input x and

parameters θ. In particular, we use F
(l)
QReLU to represent

an artificial neural network (ANN) with l layers. The

parameters of the l-th layer are denoted by θ(l), and the

parameters spanning layers l1 to l2 are represented by

θ[l1:l2].

A1.1.2. Theoretical Details for a Single Neuron
Lemma A1.1 (Spike Tracer and Output Charge) For an
ST-BIF neuron over time steps from t = 0 to t = T , the
total output charge is proportional to the change in the spike
tracer:

T∑
t=1

qoutt = qthr(ST − S0)

Proof. From the spike tracer update equation:

St = St−1 +Θ(V̂t, Vthr, St−1)

Since:

qoutt = Θ(V̂t, Vthr, St−1)× qthr

We can write:

Θ(V̂t, Vthr, St−1) =
qoutt

qthr

Substituting back into the spike tracer update:

St = St−1 +
qoutt

qthr

Summing both sides from t = 1 to T :

T∑
t=1

St =

T∑
t=1

(
St−1 +

qoutt

qthr

)

Observing that
∑T

t=1 St−1 =
∑T−1

t=0 St, the equation

simplifies to:

ST − S0 =

T∑
t=1

qoutt

qthr

Multiplying both sides by qthr:

qthr(ST − S0) =

T∑
t=1

qoutt

Which proves the lemma. �

Theorem A1.2 (LoCC for a Single Neuron) For a single
ST-BIF neuron, the neuron obeys the Law of Charge Con-
servation at any time step T

C(VT − V0) + qthr(ST − S0)−Qin
T = 0, (A6)

Proof. We start with the membrane potential update equa-

tion for the ST-BIF neuron:

Vt = Vt−1 +
qint
C

− qoutt

C
(A7)

Subtract Vt−1 from both sides to find the change in mem-

brane potential:

Vt − Vt−1 =
qint
C

− qoutt

C
(A8)

Summing both sides from t = 1 to t = T , we get:

T∑
t=1

(Vt − Vt−1) =
1

C

T∑
t=1

(
qint − qoutt

)
(A9)

The left-hand side simplifies to:

VT − V0 =
1

C

(
T∑

t=1

qint −
T∑

t=1

qoutt

)
(A10)

Let us denote:

Qin
T =

T∑
t=1

qint (A11)

Qout
T =

T∑
t=1

qoutt (A12)

Thus, we have:

VT − V0 =
1

C

(
Qin

T −Qout
T

)
(A13)

From Lemma A1.1, we know that:

Qout
T = qthr(ST − S0) (A14)

Substituting this back into our equation:

VT − V0 =
1

C

(
Qin

T − qthr(ST − S0)
)

(A15)

Multiplying both sides by C, we obtain:

C(VT − V0) = Qin
T − qthr(ST − S0) (A16)



Rearranging terms, we arrive at the Law of Charge Con-

servation for a single ST-BIF neuron:

C(VT − V0) + qthr(ST − S0)−Qin
T = 0 (A17)

This completes the proof.

�

Lemma A1.3 (Equilibium State Lemma) After entering
the equilibrium state at time Teq, the membrane potential
VTeq

and the spike tracer STeq
of an ST-BIF neuron can

only be in one of the following three states:
1. 0 ≤ VTeq

< Vthr, Smin ≤ STeq
≤ Smax,

2. VTeq
≥ Vthr, STeq

= Smax,
3. VTeq < 0, STeq = Smin.

Proof. This follows directly from the dynamics of the ST-

BIF neuron. In the absence of additional input, the neuron

reaches equilibrium state when:

1. The membrane potential is subthreshold and stable: 0 ≤
Vt < Vthr.

2. The membrane potential has reached or exceeded the

threshold, but the spike tracer is at its maximum value:

Vt ≥ Vthr, St = Smax. In this case, the neuron cannot

produce additional spikes due to the spike tracer limit.

3. The membrane potential is negative, and the spike tracer

is at its minimum value: Vt < 0, St = Smin. The neuron

cannot decrease its spike count further.

These conditions define the possible equilibrium states

of the neuron after input cessation. �

Theorem A1.4 (Temporal Independence at Equilibrium)
For an ST-BIF neuron with no input after time step T , the
spike tracer STeq

at equilibrium (no more spikes after Teq)
is determined as

STeq
= clip

(
S0 +

⌊
1

qthr

(
CV0 +Qin

T

)⌋
, Smin, Smax

)
.

Considering the default values S0 = 0, V0 = (0.5qthr +
bias)/C, Smin = 0, the output charge satisfies qthrSTeq

=
QReLU(Qin

T + bias).

Proof. From the Law of Charge Conservation (LoCC) for a

single neuron, we have:

C
(
VTeq

− V0

)
+ qthr

(
STeq

− S0

)−Qin
total = 0. (A18)

Rewriting equation A18, we obtain:

VTeq = V0 +
Qin

total

C
− qthr

C

(
STeq − S0

)
. (A19)

We proceed to analyze the possible cases for VTeq
and

STeq
based on the Equilibrium State Lemma.

Case 1: 0 ≤ VTeq < Vthr, Smin ≤ STeq ≤ Smax.

From equation A19, substituting Vthr =
qthr
C

:

0 ≤ V0 +
Qin

total

C
− qthr

C

(
STeq

− S0

)
<

qthr
C

. (A20)

Rearranging the equation, we have:

STeq
− S0 ≤ CV0 +Qin

total

qthr
< STeq

− S0 + 1. (A21)

STeq
− S0 should be an integer, so we have

STeq = S0 +

⌊
CV0 +Qin

total

qthr

⌋
. (A22)

Applying the constraints Smin ≤ STeq
≤ Smax, we have:

STeq
= clip

(
S0 +

⌊
CV0 +Qin

total

qthr

⌋
, Smin, Smax

)
.

(A23)

Case 2: VTeq
≥ Vthr, STeq

= Smax.

From Equation equation A19:

VTeq
= V0 +

Qin
total

C
− qthr

C
(Smax − S0) . (A24)

Since VTeq
≥ Vthr, we have:

V0 +
Qin

total

C
− qthr

C
(Smax − S0) ≥ Vthr =

qthr
C

. (A25)

Rearranging the equation, we have:

CV0 +Qin
total ≥ qthr (Smax − S0 + 1) . (A26)

This implies:

S0 +

⌊
CV0 +Qin

total

qthr

⌋
≥ Smax + 1. (A27)

Therefore, after applying the clipping function:

STeq
= clip (Smax + 1, Smin, Smax) = Smax. (A28)

Case 3: VTeq
< 0, STeq

= Smin.

From Equation equation A19:

VTeq
= V0 +

Qin
total

C
− qthr

C
(Smin − S0) . (A29)

Since VTeq
< 0, we have:



V0 +
Qin

total

C
− qthr

C
(Smin − S0) < 0. (A30)

Rearranging the equation, we have:

CV0 +Qin
total < qthr (Smin − S0) . (A31)

This implies:

S0 +

⌊
CV0 +Qin

total

qthr

⌋
< Smin. (A32)

Therefore, after applying the clipping function:

STeq
= clip (Smin − 1, Smin, Smax) = Smin. (A33)

Conclusion:
In all cases, the spike tracer at equilibrium can be ex-

pressed as:

STeq
= clip

(
S0 +

⌊
CV0 +Qin

total

qthr

⌋
, Smin, Smax

)
.

(A34)

Substituting this back into Equation equation A19, we

find that VTeq is fully determined by Qin
total, independent of

the timing of the inputs.

This demonstrates that the total output spike count (en-

coded in STeq
) depends only on the total input charge

Qin
total, and not on how the inputs are distributed over time.

Moreover, with the default values S0 = 0, V0 = (0.5qthr +
bias)/C, Smin = 0, the total outputs is

qthrSTeq
=qthr clip

(⌊
1

qthr
(Qin

T + bias) + 0.5

⌋
, 0, Smax

)
=QReLU(Qin

T + bias),

Here the two operators α and m for QReLU take value qthr
and Smax + 1 respectively.

�
A1.1.3. Theoretical Details for a Neural Network
Theorem A1.5 (LoCC for a Network) Consider a feed-
forward ST-BIF neural network with L0 layers. For any
neuron i in layer L (1 ≤ L ≤ L0), the Law of Charge
Conservation is given by

C
(
V

(L)
i,T − V

(L)
i,0

)
+ qthr

(
S
(L)
i,T − S

(L)
i,0

)

+
L−1∑
l=1

∑
jl,jl+1,...,jL−1

C
(
V

(l)
jl,T

− V
(l)
jl,0

)(
L−2∏
k=l

w
(k+1)
jk,jk+1

)
w

(L)
jL−1,i

−
∑

j0,j1,...,jL−1

Qj0,T

(
L−2∏
k=0

w
(k+1)
jk,jk+1

)
w

(L)
jL−1,i

= 0,

(A35)

where Qj0,T =
∑T

t=1 qj0,t.

Proof.
We will prove the theorem by mathematical induction on

the layer index L.

Base Case (L = 1):
For layer L = 1, consider neuron i in the first hidden

layer. The LoCC for single neuron gives:

C
(
V

(1)
i,T − V

(1)
i,0

)
+qthr

(
S
(1)
i,T − S

(1)
i,0

)
−Qin

i,T = 0 (A36)

where Qin
i,T is the total input charge received by neuron

i up to time T .

The input charge Qin
i,T comes from the input layer (layer

0):

Qin
i,T =

T∑
t=1

∑
j0

w
(1)
j0,i

qj0,t =
∑
j0

Qj0,T · w(1)
j0,j1

(A37)

Substituting back, it matches Equation equation A35 for

L = 1, as the summation term over l from l = 1 to L− 1 =
0 is empty (i.e., zero).

Induction Hypothesis:
Assume that the Law of Charge Conservation holds for

all neurons in layers up to L (1 ≤ L ≤ L0 − 1). That is,

equation A35 is satisfied for any neuron in layers 1 through

L.

Inductive Step:
We need to show that the Law of Charge Conservation

holds for any neuron i in layer L+ 1.

From LoCC for a single neuron, we have:

C
(
V

(L+1)
i,T − V

(L+1)
i,0

)
+qthr

(
S
(L+1)
i,T − S

(L+1)
i,0

)
−Qin

i,T = 0

(A38)

Now, the total input charge Qin
i,T to neuron i in layer L+1

is the sum of the output charges from neurons in layer L
weighted by the synaptic weights:

Qin
i,T =

T∑
t=1

∑
jL

w
(L+1)
jL,i qoutjL,t (A39)

We aim to express the total input charge Qin
i,T in terms of

the LoCC equations of the neurons in layer L.

First, note that:

T∑
t=1

qoutjL,t = qthr

(
S
(L)
jL,T − S

(L)
jL,0

)
(A40)

Substituting this into equation A39:

Qin
i,T =

∑
jL

w
(L+1)
jL,i qthr

(
S
(L)
jL,T − S

(L)
jL,0

)
(A41)



With induction hypothesis, we have LoCC holds for the

neurons in the L-th layer, so we have:

Qin
i,T =

∑
jL

w
(L+1)
jL,i qthr

(
S
(L)
jL,T − S

(L)
jL,0

)

=
∑
jL

w
(L+1)
jL,i

(
− C(V

(L)
jL,T − V

(L)
jL,0)

−
L−1∑
l=1

∑
jl,jl+1,··· ,jL−1

C(V
(l)
jl,T

− V
(l)
jl,0

)
L−1∏
k=l

w
(k+1)
jk,jk+1

+
∑

j0,j1,··· ,jL−1

Qj0,T

L−1∏
k=0

w
(k+1)
jk,jk+1

)

=−
L∑

l=1

∑
jl,jl+1,··· ,jL

C(V
(l)
jl,T

− V
(l)
jl,0

)

(
L−1∏
k=l

w
(k+1)
jk,jk+1

)
w

(L+1)
jL,i

+
∑

j0,j1,··· ,jL−1

Qj0,T

(
L−1∏
k=0

w
(k+1)
jk,jk+1

)
w

(L+1)
jL,i

(A42)

Substituting this into equation A38, we can write the

Law of Charge Conservation for neuron i in layer L + 1
as:

C
(
V

(L+1)
i,T − V

(L+1)
i,0

)
+ qthr

(
S
(L+1)
i,T − S

(L+1)
i,0

)

+

L∑
l=1

∑
jl,jl+1,...,jL

C
(
V

(l)
jl,T

− V
(l)
jl,0

)(
L−1∏
k=l

w
(k+1)
jk,jk+1

)
w

(L+1)
jL,i

−
∑

j0,j1,...,jL

Qj0,T

(
L−1∏
k=0

w
(k+1)
jk,jk+1

)
w

(L+1)
jL,i = 0

(A43)

This matches the form of equation A35 for layer L + 1.

Thus, the Law of Charge Conservation holds for neuron i in

layer L+ 1.

Conclusion:
By mathematical induction, the Law of Charge Conser-

vation holds for all neurons in the network up to layer L0.

�

Theorem A1.6 (Temporal Independence for a Network)
For an L0-layer feed-forward ST-BIF neural network with
weights θ and no inputs after time step T , the spike
tracers of the output neurons at equilibrium, denoted by
S
(L0)
eq = [S

(L0)
i,eq ]

mL0
i=1 , are determined by

qthrS
(L0)
eq = FQReLU(Qtotal; θ),

where the total input charges are Qtotal = [Qj,T ]
m0
j=1.

Remark: This theorem holds under the default settings for

S0, V0 and Smin.

Proof. We will prove the theorem by induction on the layer

number L0.

Base Case (L0 = 1):
For neurons in the 1-th layer (input layer), the theo-

rem reduces to the single-neuron case previously discussed,

where the spike tracer S
(0)
i,eq and membrane potential V

(0)
i,eq

are determined solely by Qtotal = [Qj,T ]
m0
j=1 and the net-

work weights θ, independent of input timing.

Inductive Hypothesis:
Assume that the theorem holds for all neural networks

with layers L0 < L. So we have

qthrS
(L0)
eq = FQReLU(Qtotal; θ),

for L0 < L.

Inductive Step (Proving for Layer L): From Tempo-

ral Independence for a Single Neuron (Theorem A1.4), we

have

qthrS
(L)
i,Teq

= QReLU(Q
(L),in
i,T + bias

(L)
i ),

with bias
(L)
i is determined by θ(L), and Q

(L),in
i,T is deter-

mined by qthrS
(L−1)
eq , which can be calculated as

qthrS
(L−1)
eq = F

(L−1)
QReLU(Qtotal; θ

[1:L−1])

from inductive hypothesis. So we have

qthrS
(L)
eq = FQReLU(Qtotal; θ).

Conclusion By mathematical induction, the ST-BIF neural

network is equivalent to an ANN with a QReLU activation

function for any number of layers. Specifically,

qthrS
(L0)
eq = FQReLU(Qtotal; θ).

holds for every positive integer L0.

�

A1.1.4. Convergence Results
Theorem A1.7 For an ST-BIF neuron, if external inputs
cease after time step T , then the neuron will converge to
equilibrium no later than time step Smax − Smin + T .

Proof. After time step T , the neuron no longer receives ex-

ternal inputs. Let VT and ST denote the neuron’s membrane

potential and spike tracer at time T , respectively.

We analyze the neuron’s behavior based on its membrane

potential at time T :

Case 1: VT ≥ Vthr.

• Subcase 1a: If ST = Smax, the neuron cannot increase

its spike tracer further. Even if VT ≥ Vthr, it cannot emit

additional positive spikes. Thus, the neuron has already

reached equilibrium.



• Subcase 1b: If ST < Smax, the neuron will emit positive

spikes in subsequent time steps. Each spike reduces the

membrane potential by
qthr
C

. The neuron continues to fire

until either:

1. The membrane potential drops below Vthr, or

2. The spike tracer increases to Smax.

The maximum number of positive spikes the neuron can

emit is Smax−ST . Therefore, the neuron will reach equi-

librium in at most Smax − ST ≤ Smax − Smin additional

time steps.

Case 2: VT < 0.

• Subcase 2a: If ST = Smin, the neuron cannot decrease

its spike tracer further. Even if VT < 0, it cannot emit

additional negative spikes. Thus, the neuron has already

reached equilibrium.

• Subcase 2b: If ST > Smin, the neuron will emit negative

spikes in subsequent time steps. Each spike increases the

membrane potential by
qthr
C

. The neuron continues to fire

until either:

1. The membrane potential rises above 0, or

2. The spike tracer decreases to Smin.

The maximum number of negative spikes the neuron can

emit is ST −Smin. Therefore, the neuron will reach equi-

librium in at most ST − Smin ≤ Smax − Smin additional

time steps.

In both cases, the neuron will reach equilibrium within

Smax − Smin time steps after time T . Therefore, the total

time to reach equilibrium is no more than Smax−Smin+T
time steps. �

Theorem A1.8 For an L0-layer feed-forward ST-BIF neu-
ral network, if network inputs cease after time step T , then
all neurons converge to equilibrium no later than time step
(Smax − Smin)L0 + T .

Proof. By Theorem A1.7, when inputs to the network cease

after time step T , all neurons in the first layer stop firing no

later than Smax−Smin+T . If neurons in the l-th layer stop

firing after time step T ′, then by Theorem A1.7, neurons in

the l+1-th layer stop firing no later than Smax−Smin+T ′.
Therefore, the L0-th layer stops firing no later than (Smax−
Smin)L0 + T . Thus, all neurons in the network converge to

equilibrium no later than time step (Smax − Smin)L0 + T .

�
A1.1.5. Equivalence between DiffEncode and VaniEn-

code
Theorem A1.9 (Encoding Equivalence) Consider an L0-
layer feed-forward ST-BIF neural network with weights θ.
Under both DiffEncode and VaniEncode, the spike trac-
ers of the output neurons converge to the same equilib-
rium value. Without loss of generality, for the two input

sequences

Idiff = [X0, X1 − X0, . . . , Xk − Xk−1, 0, 0, . . . , 0]

and
Ivani = [Xk, 0, 0, . . . , 0],

it holds that

qthr S
(L0)
eq (Idiff) = qthr S

(L0)
eq (Ivani).

Here, S(L0)
eq (I) is the value of spike tracer at equilibrium

for input sequence I. Moreover, the network reaches these
respective equilibrium values within

(Smax − Smin)L0 + k + 1 and (Smax − Smin)L0 + 1

time steps, respectively.

Proof. By Theorem A1.6, we have

qthr S
(L0)
eq (Idiff) = FQReLU

(
g(Xk); θ

)
= qthr S

(L0)
eq (Ivani).

By Theorem A1.8, these equilibria are reached within

(Smax − Smin)Li + k + 1 and (Smax − Smin)Li + 1

time steps, respectively. Consequently, in finite time, the

network converges to the same equilibrium output using ei-

ther DiffEncode or VaniEncode. �

A1.2. Experiment Setup
In VISTREAM, we first train a quantized Quantized back-

bone and convert the QANN to SNN. We choose pretrained

ResNet-50 as the backbone of Unitrack and YOLOV3.

Then, we insert quantize functions to ResNet-50 and train

the QANN for 90 epochs, with 1.5e-4 base learning rate,

1024 batch size, 0.05 weight decay, cosine learning rate

schedule, and several data augments including mixup [40]

and auto-augment [5].

A1.3. Detailed Energy Analysis

Figure A1. Energy analysis containing data movement energy.

We further analyze the energy using the model in [24]

that counts the data movement, whose results are shown

in A1. Results show that most of the energy is consumed

by data movement. By using the DiffEncode, VISTREAM



achieves an overall energy comparable to ANN without sac-

rificing the equivalence of QANN. Moreover, by directly

using the compress method proposed in [38], which is al-

ready part of VISTREAM, we reduced the energy from

2006.85mJ to 1382.88mJ without accuracy loss in multi-

object tracking tasks, further amplifying the efficiency

gains.

A1.4. Analysis of SOP and Input Magnitude under
Varying Frame Rates

Figure A2. SOP and input magnitude across varying frame

rates (top) and their correlation (bottom), measured on CARLA-

simulated data with YOLO V3 under DiffEncode.

In this appendix, we provide additional details on the

CARLA-based experiments to facilitate reproducibility and

clarify the setup used to evaluate the VISTREAM framework

in conjunction with the YOLO V3 network under the Diff-

Encode paradigm. We employed CARLA (version 0.9.13)

and loaded the Town03 map in synchronous mode, en-

abling precise frame-by-frame control of the simulation. A

Tesla Model 3 blueprint was randomly spawned on the map,

and its autopilot functionality was managed via the Traffic

Manager with all traffic signals and speed limits ignored to

maintain a continuous driving sequence. We set the camera

resolution to 416 × 416 pixels and attached the sensor at a

fixed offset (approximately 1.5 m forward and 2.4 m above

the vehicle’s center).

For each run, we collected a total of 3,000 frames, ad-

justing the simulator’s fixed time-step to achieve the tar-

get frame rates. Specifically, we tested frame rates of 1

– 1,000 Hz to cover both typical and ultra-high regimes of

modern CMOS image sensors. These images were then fed

into VISTREAM to measure the corresponding spiking op-

erations per frame (SOP) and input magnitude.

As shown in Figure A2, within the usual range of 60 Hz

to 100 Hz, moderate increases in the frame rate significantly

reduce both SOP and input magnitude, leading to improved

energy efficiency. However, once the frame rate escalates to

several hundred hertz and beyond, we observe diminishing

returns where further rate increments yield only marginal

decreases in SOP and input magnitude. In future work, we

plan to explore more sophisticated encoding strategies and

alternative sensor processing methods to maintain the en-

ergy advantages of VISTREAM across a broader range of

frame rates, including the ultra-high-FPS regime.


