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In this supplementary material, firstly, we examine the
asymmetry of the PSF in real QPD sensors (Sec. 1). Sec-
ondly, we provide a comprehensive overview of the QPD2K
dataset (Sec. 2), encompassing QPD2K samples, disparity
ground truth acquisition and a summary of QPD datasets.
Thirdly, we provide the reparameterization method for
the illumination-invariant module and models’ complexity
(Sec. 3) and finally present additional qualitative and quan-
titative results on the QPD2K dataset (Sec. 4).

1. PSF Calibration

Theoretically, the point spread function (PSF) of a dual-
pixel (DP) sensor is symmetric under ideal conditions [6,
11]. However, the PSF of actual DP sensors deviates from
this idealized model, exhibiting spatial variance and asym-
metry [14].

To examine the symmetry of the PSF in real QPD sen-
sors, we utilize the QPD sensor (OV50A) to measure the
PSF by a well-established calibration method [1, 8]. The
calibration pattern comprises a grid of small disks and
blocks. Given that our camera features a fixed optical
system, we obtain various in-focus and out-of-focus im-
age pairs by adjusting the position of the voice coil motors
(VCMs). Using the in-focus and out-of-focus image pairs,
we compute the absolute PSFs according to Eq. (1). We re-
strict our calculation to the central region to minimize the
distortion effect in the border region of images. The cali-
bration pattern and PSFs are illustrated in Fig. 1.

argmin
h

n∑
j=1

λj ∥fj ∗ (is ∗ h− iB)∥22 +

λn+1 ∥▽h∥22 + λn+2 ∥R ◦ h∥22 ,

(1)

where iB and iS denote the out-of-focus and in-focus im-
ages respectively, R is spatial regularization matrix, The
constraints λj , λn+1, λn+2 ensure that the kernel is non-
negative. The estimated PSF kernel is represented by h, and
fj is a filter applied to the images. Our calibration results
indicate that the PSFs are asymmetric in real QPD sensors.

© 2022 OMNIVISION | Security B: For Internal Use Only26

(A) In-focus 

(B) Out-of-focus (C) Left PSF (D) Right PSF (E) Up PSF (f) Down PSF

Figure 1. (A) In-focus calibration pattern (B) Out-of-focus cal-
ibration pattern. (C) Different blur degrees from top to bottom.
Notably, our PSF calibration results also reveal spatial variance,
non-circularity and asymmetry.

2. More Datasets Details

Figure 2. QPD2K samples: QPD raw data and the corresponding
disparity ground truth.
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Figure 3. Disparity ground truth acquisition pipeline.

2.1. QPD2K Samples
In the main text, we described the configuration of the
dataset. We provide additional samples from the training
set of our QPD2K dataset, illustrated in Fig. 2. Notably,
our dataset comprises complex scenes with cluttered back-
grounds and expansive natural environments.

2.2. Disparity Ground Truth Acquisition.
Directly estimating the disparity of a natural scene is a chal-
lenging task, whereas acquiring the depth information is
relatively more straightforward. To overcome this limita-
tion, we first acquire depth information and subsequently
calibrate the disparity-depth relationship of QPD data to ac-
quire disparity information. In the following section, we
will elaborate on our pipeline, disparity calculation details,
and measurement accuracy to provide a more comprehen-
sive understanding of our dataset.

Overall pipeline. The workflow of our algorithm is de-
picted in Fig. 3. To achieve high-precision disparity, we
employ a multi-stage approach. Initially, we project speckle
structured light to obtain a coarse depth map. However, this
method is susceptible to inaccuracies in ill-posed regions.
To address this limitation, we leverage the texture-invariant
properties of structured light and project a sequence of
seven Gray-coded patterns and four phase-shifting sinu-
soidal patterns to generate an absolute phase map. We then
refine the depth results by matching the phase map within
the range of the initial depth, yielding an optimized depth
map. We further refine the depth map through outlier re-
moval and median filtering. Ultimately, we acquire dispar-
ity information from refined depth by the disparity-depth
relationship.

Depth accuracy. To assess the measurement accuracy of
the QPD disparity acquisition system, we perform an exper-
iment involving the measurement of standard spheres and a
gauge block. As illustrated in Fig. 4, the actual radius of the

standard spheres is 20mm, whereas our measured radius is
19.86mm, resulting in a measurement error of 0.14mm.
Similarly, the actual height of the gauge block is 9mm, and
our measured height is 8.2mm, yielding a measurement er-
ror of 0.8mm. These results demonstrate the high precision
of our system.
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(A) Stereo input

(B) Depth (point cloud visualization)

Measured spherical radius: 19.86 mm (error is less than 1 mm)
Measured gauge block thickness: 8.20 mm (error is less than 1 mm)

Figure 4. By measuring standard spheres and gauge block, our
results show a mean error of less than 1 mm, which validates the
high precision of our method.

Disparity calculation details. The core of QPD dispar-
ity ground truth calculation involves establishing correspon-
dences between the left and right or up and down sub-image
pairs. To achieve this, we employ the Normalized Cross-
Correlation (NCC) method to compute disparity, which is
robust to illumination variations. The QPD dataset exhibits



Datasets Input type Ground-truth type Ground-truth acquisition Scenarios Resolution
DP-disp [11] Dual-pixel Depth Depth-from-defocus Indoor/Outdoor (only testset) 5180× 2940
DP-Face [5] Dual-pixel Depth Structured-light Human face 1680× 1120

DP-PixelPhone [4] Dual-pixel Depth Multi-view stereo Indoor/Outdoor 1512× 2016
QP-Data [13] Quad-pixel Disparity Simulation Indoor/Outdoor 1024× 768

DP5K [7] Dual-pixel Depth Structured-light Indoor 1024× 768
dpMV [3] Dual-pixel Depth Multi-view stereo Indoor/Outdoor 1512× 2016

QPD2K (Ours) Quad-pixel Disparity Stereo structured-light Indoor 3000× 2000

Table 1. Existing DP/QPD datasets summary. Our QPD2K dataset provides high-resolution, real-world disparity ground truth.
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Figure 5. Disparity calculation pipeline.

dual-directional information, and we consider the horizon-
tal disparity as an example. The pipeline for calculating
disparity is illustrated in Fig. 5. Firstly, we divide the left
view into non-overlapping 64 × 64 tiles and calculate the
disparity for each tile by setting the search range to [−8, 8]
with a step size of 1, resulting in 17 points of NCC matching
costs. We identify the maximum matching cost correspon-
dence disparity Dinit. To obtain the sub-pixel disparity,
we interpolate the NCC matching cost using a Bezier curve
interpolation around Dinit within the range of [−8, 8], in-
creasing the number of points from 17 to 257. We then
determine the maximum matching cost correspondence dis-
parity Dsub. Ideally, the NCC matching cost curve should
follow a parabolic distribution, and we perform a quadratic
fit to find the maximum value and corresponding disparity
Dh. We compute the confidence level Confh by comparing
the fitted curve with the original NCC matching cost. Re-
peating these steps for the vertical disparity, we obtain the
disparity Dv and corresponding confidence Confv . Finally,
we combine the two directions’ disparity using confidence-
weighted fusion to attain the final disparity Df :

Df =
Dh × Confh +Dv × Confv

Confh + Confv

. (2)

This approach enables more accurate disparity estimation
by leveraging the dual-directional information inherent in
the QPD dataset.

Disparity-depth fitting. To mitigate the impact of lens

distortion on the disparity-depth relationship, we divide the
calibration image into 5 × 5 blocks and select the central
3× 3 blocks to analyze the relationship between depth and
disparity. Our fitting results are presented in Fig. 6. No-
tably, we observe that the disparity-depth relationship ex-
hibits spatial variability, prompting us to restrict our anal-
ysis to the central region of the image with a resolution of
3000 × 2000. Furthermore, we apply a spatial averaging
technique by taking the mean of 3× 3 windows to establish
a robust and accurate disparity-depth relationship.

2.3. QPD Dataset Summary.
We present a comprehensive summary of publicly avail-
able datasets related to DP and QPD sensors in Tab. 1.
Notably, only QP-Data [13] and QPD2K offer disparity,
whereas our dataset stands out as the sole high-resolution,
real-world disparity dataset. Our dataset bridges the gap be-
tween QPD-based tasks and DP-based ones.
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Figure 7. Convert HSDC into standard convolution.

3. Method Details
In this section, we provide additional details on the repa-
rameterization method for the illumination-invariant mod-
ule and analyze the model complexity.

Illumination-invariant module reparameterization.
As depicted in Fig. 7, we exemplify our approach using the
horizontal sobel differential convolution (HSDC), where we
leverage the sobel operator to extract the differential fea-
tures from the input. Subsequently, we apply a convolu-
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(A) Calibration pattern (B) Disparity-depth fitting

Figure 6. Disparity-depth fitting. The QPD disparity and the depth are in an affine relation.

tional operation to these differential features, resulting in
the generation of the final differential features. After train-
ing, we compute the derivatives of the convolutional ker-
nels, enabling the calculation of the differential features.

Model complexity analysis. In comparison to con-
ventional DP-based disparity estimation methods, such
as SFDB [6], and the QPD disparity estimation method,
QPDNet [13], we present a comprehensive complexity anal-
ysis of our proposed model in Tab. 2. Additionally, the
complexity analysis of the ablation study is summarized in
Tab. 3, providing insights into the impact of individual com-
ponents on the overall model complexity.

Method Input type Params (M) Flops (G)
SFDB [6] DP 10.64 1048

QPDNet [13] QPD 13.69 1951
DPNet (Ours) DP 18.43 1304

QuadNet (Ours) QPD 24.43 2793

Table 2. Model complexity summary.

Method Input type Params (M) Flops (G)
Base DP 9.37 1153

Base + IIM DP 12.54 1259
Base + Subpixel DP 18.01 1218

Base + IIM/Subpixel DP 18.43 1304
Base + All QPD 24.43 2793

Table 3. Ablation experiments complexity summary.

4. Additional Results
We adopt the evaluation metrics employed in the Scene
Flow dataset [9], but due to the relatively small disparity
in our dataset, epe is as follows:

1

N

∑
(x,y)∈N

|dest (x, y)− dgt (x, y) |. (3)

Bad metrics are as follows:

1

Nall

∑
(x,y)∈Nall

{|dest (x, y)− dgt (x, y) | > P}, (4)

where the P values of Bad0.3, Bad0.5, and Bad1 are 0.3,
0.5, and 1, respectively.

As shown in Fig. 8, we conduct additional comparisons
between DPNet and QuadNet on QPD2K. In the main text,
we have already demonstrated that our DPNet achieves the
best performance among methods using DP input. How-
ever, since DP data can only provide horizontal dispar-
ity information, it often performs poorly in regions with
weak textures or horizontally repetitive textures. In con-
trast, QuadNet, which can leverage both horizontal and ver-
tical disparity information, achieves superior performance.

In Fig. 9, we further compare QuadNet with
QPDNet [13]. For scenes with background, our QPDNet
provides accurate edge and background disparity informa-
tion, effectively handling overexposed and small-disparity
regions where QPDNet often fails to estimate accurate
background disparity. For open natural scenes, our QPDNet
demonstrates a significant advantage in regions with weak
textures and low light. Fundamentally, the difference lies in
the fact that QPDNet performs fusion at the feature level,
whereas our approach conducts fusion at the disparity level.

Based on the characteristics of the QPD2K testing set
scenes, we categorize them into two types: scenes with
background and open natural scenes. We present a quantita-
tive comparison in Tab. 4. Our results indicate that QuadNet
achieves superior performance in both categories. In con-
trast, QPDNet performs below expectations in scenes with
the background. We attribute this to its estimation of only
half of the disparity, which can lead to a degeneration in
estimation accuracy.



(A) Reference (B) DPNet (Ours) (C) QuadNet (Ours) (D) GT

Figure 8. Additional qualitative experimental results on QPD2K. QuadNet demonstrates superior performance over DPNet in weak texture
regions and repetitive structure.

(A) Reference (B) QPDNet [13] (C) QuadNet (Ours) (D) GT

Figure 9. Additional qualitative experimental results on QPD2K. Our QuadNet outperforms QPDNet [13] in ill-posed regions, such as
over-exposure and blur areas.



Method Scenes with background Open natural scenes Mean
bad 0.3↓ bad 0.5↓ bad 1↓ epe↓ bad 0.3↓ bad 0.5↓ bad 1↓ epe↓ bad 0.3↓ bad 0.5↓ bad 1↓ epe↓

DPdisp [11] 0.9900 0.9793 0.8045 1.5504 0.9363 0.8849 0.7382 1.8574 0.9691 0.9433 0.7791 1.6796
SFBD [6] 0.9765 0.9484 0.2188 1.0829 0.8515 0.7523 0.5431 1.2505 0.9266 0.8700 0.3665 1.1500
CCA [10] 0.9735 0.9528 0.4361 1.2776 0.8473 0.7505 0.5910 1.4797 0.9246 0.8743 0.4962 1.3560
QPDNet [13] 0.9675 0.9133 0.2114 0.9123 0.8208 0.7243 0.4809 1.0785 0.9088 0.8377 0.3372 0.9788
IEGV-Stereo [15] 0.9006 0.8359 0.6706 1.4239 0.9650 0.9374 0.8411 2.1620 0.9263 0.8765 0.7388 1.7192
Mc-stereo [2] 0.2682 0.1153 0.0263 0.1961 0.7927 0.6625 0.4131 1.3936 0.4780 0.3342 0.1810 0.6751
S-RAFT [12] 0.2837 0.1858 0.0099 0.2399 0.6685 0.4343 0.0791 0.5031 0.4376 0.2852 0.0376 0.3452
S-IEGV [12] 0.2637 0.1586 0.0221 0.2349 0.6981 0.4956 0.1899 0.6130 0.4375 0.2934 0.0892 0.3862
DLNR [16] 0.1005 0.0215 0.0031 0.1172 0.6718 0.4409 0.0790 0.5053 0.3290 0.1892 0.0335 0.2725
DPNet (Ours) 0.0489 0.0136 0.0029 0.0849 0.6095 0.3806 0.0789 0.4675 0.2731 0.1604 0.0333 0.2380
QuadNet (Ours) 0.0280 0.0078 0.0016 0.0709 0.5683 0.2941 0.0396 0.4029 0.2294 0.1136 0.0166 0.2007

Table 4. Additional quantitative results on QPD2K. Our QuadNet achieves superior performance in both categories.
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