
AnyEdit: Mastering Unified High-Quality Image Editing for Any Idea

Supplementary Material

A. Overview
In this supplementary material, we present:
• More detailed dataset collection process of AnyEdit (Sec-

tion B).
• Statistic information of AnyEdit (Section C).
• Additional examples of AnyEdit (Section D).
• Detailed description of AnyEdit-Test Benchmark (Sec-

tion E).
• Detailed experimental results of various editing types on

AnyEdit-Test Benchmark (Section F).
• Implementation details (Section G).
• More qualitative results on various benchmarks and hu-

man evaluations (Section H).

B. Detailed Dataset Collection Process
B.1. Editing Type Definition
Here, we explain the detailed definition of each editing task
in AnyEdit, which comprises five primary categories with
25 distinct editing types, as shown in Table 7.

B.2. Diverse Instruction Generation.
B.2.1. Prompt Constraints
To address the limitations in instruction diversity and con-
sistency during the process of Instruction Generation, we
use prompt constraints to guide the LLM as a task-specific
agent that responds in JSON format with diverse edit-
ing types. A key innovation is incorporating a task-
specific user-LLM conversational history into the prompt,
where we replace direct constraints with high-quality, hand-
crafted examples. This approach enables the LLM to learn
from ideal responses and improve subsequent generations.
Specifically, we design templates for each task instructing
the LLM to respond in the required format. These tem-
plates are tailored for each task and include four core el-
ements: input, output, editing type, and edit instruction. We
also define a set of action verbs for each task, ensuring the
LLM’s response aligns with our guidelines and improving
the quality and consistency of the generated output. The
detailed prompt constraints are shown in Table 8.

B.2.2. In-context Examples
As mentioned in Section 3.2, we employ in-context exam-
ples in the conversation history to develop a task-specific
agent tailored to each editing type. For each new task, we
initially generate a set of five in-context example instruc-
tions into prompt templates for instruction generation. Af-
ter generating an editing instruction, we integrate it with its

original caption to create instruction pairs, which are used
to expand the in-context example pool. For each subsequent
generation process, five in-context examples are randomly
selected. This iterative self-enhancement mechanism ex-
poses the generation process to a diverse range of examples,
encouraging more varied and robust output responses. In
this way, we maintain a cohesive conversational flow while
progressively increasing the diversity and complexity of the
generated instructions, facilitating the construction of the
AnyEdit dataset.

B.3. Adaptive Editing Pipelines
This section will elaborate on the pipeline implementation
details for various editing tasks in the AnyEdit datasets col-
lection. Figure 1 shows the illustrations of the main specific
pipelines in our Adaptive Editing Pipeline module to con-
struct these various high-quality editing instructions adap-
tively.

B.3.1. Local Editing
Remove. As shown in Pipeline1 of Figure 1, we first ex-
tract the mask of the edited object in the editing instruction
by GroundingDINO [16] and Segment Anything [13]. We
then generate the target image using SD-Inpaint [29], with
the original image and the mask produced during the pro-
cess. To remove the target object, we set the prompt word
to empty and the negative prompt word to edited object. No-
tably, we also apply dilation to the mask and perform Gaus-
sian filtering to smooth it, ensuring a more natural blend
with the surrounding contents. In addition, we merge the
edited image, mask, and original image to retain image ele-
ments outside the content of the editing instructions.
Replace. As shown in Pipeline1 of Figure 1, the process of
generating data for replace type is similar to the removal.
The only difference is that we set the prompt word to the
new object. In this way, our pipeline tends to produce a new
object to replace the edited object instead of removing it.
Add. As shown in Pipeline1 of Figure 1, the process of gen-
erating data for add type is similar to the removal. However,
since the add edit is to add a new object to the original im-
age, its correct placement is unknown. Thus, we reverse the
process by first generating the image of the output caption
as the edited image and then using the ‘remove’ editing in-
struction to obtain the original image that does not include
the newly added object. In this way, we obtain the origi-
nal image and the edited image with the newly added object
seamlessly integrated.
Counting. The counting-type editing introduces the con-
cept of object quantity, performing the corresponding num-

Editing Instruction:
Delete the man next
to the woman.

Edited object: man

Grounding Dino & SAM
Mask imageOriginal image

SD-Inpaint

Edited Image

Mask Normalized Difference

Instructpix2pix
Relevance MapMiddle Image

Fusion

Edited Image

Editing Instruction:
Change the floor to
wooden.

Original Image
Original caption: A brown
bear was running on the sand
Edited caption: A brown bear
was dancing on the sand

mask cross-attention

Original
mask

Edited
mask

mutual

self-attention

Edited Image

Editing Instruction:
Move the giraffe
to the left

Edited Image

Foreground Background

Separation Background
image

Foreground
image

resize / movement

paste

Editing Instruction:
What will happen if
someone steps on it

Implicit → Explicit

Enhanced Instruction:
1. Break part of the clay.
2. Flatten the clay.

Step-by-Step

Instructpix2pix

Edited Image

Editing Instruction: change the
position of the cat and the dog
Original caption: A cat and a dog
are playing on the grass

Layout Generation

dog
cat

grass

dog
cat

grass

Original layout Edited layout

Attention

Manipulation
Edited
Image

Original
Image

Editing Instruction:
Replace the [dog] to
the object in the image

Visual Input

ID

Extractor

Detail

Extractor

U-Net

Edited Image

Edited Image

Editing Instruction:
change the material of
hat like the image

Visual Input

Grounding Dino & SAM

Latent Illumination Guidance

Geometry GuidanceDepth Estimation SD-Inpaint

Tool Pocket

Instruction 1: Watch the given scribble image to change cat
Instruction 2: Watch the given segmentation image to change cat
Instruction 3: Watch the given sketch image to change cat
Instruction 4: Watch the given depth image to change cat

Visual Input Construction

Pipeline1

Pipeline2

Pipeline3

Pipeline4

Pipeline5

Pipeline6

Pipeline7

Pipeline8

Pipeline9

Figure 1. The illustration of detailed pipelines for each editing type in the AnyEdit dataset collection.

ber of removal or additions iteratively based on the specified
count in the instructions. Each step in the process is illus-
trated in the Pipeline1 of Figure 1.

Color Alter & Appearance Alter. As shown in Pipeline2
of Figure 1, the key aspect of editing types like color alter-
ation and appearance alteration lies in modifying only the
object’s attributes or appearance instead of altering or re-
moving whole objects. Therefore, we introduce a Normal-
ized Attention Difference [19] based on input-output cap-
tion discrepancies to identify the target editing mask. Based
on this, we apply InstructPix2Pix [2] for instruction-based
editing, blending the original and edited images within the
masked region to produce the final result, thereby minimiz-
ing element confusion.

Action Change. To achieve complex non-rigid image edit-

ing, we introduce a joint intervention mechanism involving
mutual self-attention and masked cross-attention, as shown
in Pipeline3 of Figure 1. This approach addresses the lim-
itations in the action change editing instructions, which
sometimes fail to accurately execute editing intentions due
to the need for fine-grained modifications.

Textual Change. To meet the demands for textual
change, we collected captions containing text from the
AnyWord-3M dataset [35], namely, ArT [5], COCO-
Text [6], RCTW [27], LSVT [17], MLT [20], MTWI [23],
ReCTS [28]. Following this, we generate editing instruc-
tions that alter only the text within the image, guided by spe-
cific type constraints and in-context examples in our diverse
instruction generation. We ultimately generate correspond-
ing images as the final result by using a text-specialized T2I

model (i.e., FLUX), with both the original caption and the
edited caption maintained under the same seed.
Material Change. We reuse the original and edited im-
ages from Material Transfer in Visual Editing. However, we
only utilize editing instructions to convey the editing intent
without using material images as references. Specifically,
we will change “the material of [object] like the image” to
“change the material of [object] to [material category]”.

B.3.2. Global Editing
Background Change. As shown in Pipeline1 of Fig-
ure 1, we define background changes as modifications to
the edited object “background”. To avoid unnecessary fore-
ground modifications, we extract and invert all foreground
masks from captions, then merge them with the background
mask. Similar to the replacement instructions, we also ap-
ply dilation to the merged mask and perform Gaussian fil-
tering to eliminate artifacts in the contour.
Tone Transfer. We define three types of changing
scenes (i.e., season, time, weather) involving the overall
tone of the image. According to this, we generated edit-
ing instructions tailored to tone transfer and used Instruct-
Pix2Pix [2] to edit the whole image, as shown in Pipeline1
of Figure 1.
Style Change. We collect 50 desired style images and ex-
tract 2,500 images from the MSCOCO validation set as
original images. Using an API of Prisma Art, we applied
style transfer to obtain the edited results. Ultimately, we
only retain the intuitive style as the style changes editing
instructions, such as “animated”.

B.3.3. Camera Movement Editing
Movement & Resize. As shown in Pipeline4 of Figure 1,
we first extract the foreground object and backgrounds sep-
arately according to the edited object. Here we use the “re-
move” operation to ensure the pixel integrity of the back-
ground after removing the foreground. Then, we utilize the
crop-and-paste operation to change the size of the edited
object and the position of it in the edited image.
Outpainting. To reduce the complexity of construct-
ing data, we inversely designate the images from the ini-
tial dataset as extended images. Given the input caption,
we randomly select an object within it and use Ground-
ingDINO to extract its bounding box in the image. Then,
we apply a mask to the areas outside the bounding box and
obtain the original image that contains only selected ele-
ments. The extended and original images are then used to
construct editing instructions for the outpainting type.
Rotation Change. Since direct perspective rotation change
of images is challenging, we extract related image pairs
directly from MVImgNet [40], the Large-scale Dataset of
Multi-view Images, to construct original images and edited
images for rotation changes. Then, we categorize the edit-
ing instructions as “rotate the object clockwise” and “ro-

tate the object counterclockwise” according to changes in
the camera’s viewpoint, thereby constructing corresponding
pairs of editing data.

B.3.4. Implicit Editing
Implicit Change. As shown in Pipeline5 of Figure 1,
we first elicit the world knowledge from LLMs to trans-
form implicit instructions into explicit instructions, which
directly convey executable editing intentions (e.g., “Flat-
ten the clay” directly conveys the alteration in the clay’s
appearance without requiring additional interpretation). In
this way, we use the instruction-based editing method to
complete the explicit instructions step-by-step, thereby con-
structing edited images with implicit changes. We also en-
rich the dataset by using existing dynamic world editing
datasets [38].
Relation Change. To adjust the positional relationships of
objects within images, our pipeline first generates layouts
based on the original captions, as shown in Pipeline6 of
Figure 1. We can swap the positional relationship between
two objects in the layout space to construct the edited lay-
out. Subsequently, we adopt attention manipulation to the
layout-to-image models [46] to generate original and edited
images that alter only relative positioning without changing
other content.

B.3.5. Visual Editing
Image Reference. We are the first to incorporate additional
visual input into instruction-based image editing. To reduce
the cost of automated synthetic data generation, we lever-
age zero-shot image customization [4] to synthesize images
containing visual concepts. We repurpose the edited ob-
jects from the remove or replace steps and the correspond-
ing masks to guide the target positioning within the edited
image. Additionally, we introduce an ID extractor to embed
visual concepts into the target image and a detail extrac-
tor to preserve fine content details. Finally, We construct
edited images containing the visual concepts in the image
reference, as shown in the pipeline7 of Figure 1.
Material Transfer. Similar to the image reference, the ma-
terial transfer requires injecting the material reference into
the target image to achieve the material transfer effect. Con-
sidering the compatibility between materials and target ob-
jects, we further introduce depth estimation and latent illu-
mination guidance for seamless material fusion. The total
process is shown in the Pipeline8 of the Figure 1.
Visual Condition. To support a broader range of visual
editing types, we incorporate additional condition images
as reference images through tool pockets from Control-
Net [42]. We use tools to generate the corresponding con-
ditional images and construct the corresponding editing in-
structions by templates. Notably, the edited images origi-
nate from other editing instructions, where the visual con-
dition constructs new instruction pairs without generating

additional edited images.

C. Statistics of AnyEdit
We present detailed dataset statistics for all editing types in
AnyEdit in Table 1.

Editing Type #Instruction #Image
Local Editing

Remove 116013 116013
Replace 97219 97219
Add 390049 390049
Color Alter 337078 337078
Appearance Alter 79720 79720
Material Change 21646 -
Action Change 47210 47210
Textual Change 2500 2500
Counting 698 698

Global Editing
Background Change 413570 413570
Tone Transfer 553919 553919
Style Change 27488 -

Camera Movement Editing
Movement 7724 7724
Outpaint 57462 57462
Rotation Change 17022 17022
Resize 10219 10219

Implicit Editing
Implicit Change 10000 10000
Relation Change 410 410

Visual Editing
Visual Sketch 55385 -
Visual Scribble 55385 -
Visual Segmentation 55385 -
Visual Depth 55385 -
Visual Layout 55385 -
Material Transfer 21646 21646
Image Reference 17885 17885

Total 2506403 2180350

Table 1. The detailed statistics of the AnyEdit dataset.

D. More Examples of AnyEdit
See figure 2 and 3 for more data examples with various edit-
ing types in AnyEdit.

E. AnyEdit-Test Benchmark
To comprehensively evaluate AnyEdit’s capabilities across
a broader range of editing tasks, we carefully selected 50
example pairs from each type of editing task supported by
AnyEdit. This selection process allowed us to construct a
new test set, named AnyEdit-Test, designed specifically to

provide a more rigorous assessment. The resulting dataset
includes diverse and representative editing challenges, of-
fering a well-rounded evaluation benchmark better to un-
derstand AnyEdit’s performance across different task types.
In this way, AnyEdit-Test not only broadens the scope of
evaluation but also ensures that the test set includes a vari-
ety of editing complexities, thereby making the evaluation
both more challenging and more insightful. In figures 4 to 8,
the editing examples encompass all types from our AnyEdit
dataset, all of which demonstrate excellent adherence to in-
structions and high visual fidelity. This further attests to the
high quality and diversity of the editing data in AnyEdit.
We will release this high-quality dataset and benchmark for
community research.

F. Detailed Experiments of AnyEdit-Test
We conduct detailed quantitative evaluations of 25 editing
types in AnyEdit-Test, focusing on editing accuracy and
content consistency. Detailed results for the AnyEdit-Test
benchmark can be seen in Table 9, 10, 11. We have the
following observations: (1) Existing models often fail to
ensure editing accuracy in complex tasks (e.g., significant
reduction of CLIPim in action change, rotation, outpaint-
ing shown in Tab. 9 & 10, exposing the limitations of cur-
rent benchmarks for complex tasks. For fine-grained editing
tasks, models frequently struggle to maintain the integrity of
image content while making precise modifications (e.g., L1
nearly doubled performance degradation in action change
and textual change). These tasks demand both a high level
of fine-grained control and the ability to preserve the origi-
nal context. These limitations highlight a fundamental gap
in existing benchmarks and AnyEdit-Test, which is more
comprehensive for complex, real-world editing demands.
(2) Even for common tasks in AnyEdit-Test, some previous
SOTA models show a notable performance drop compared
to existing benchmarks, revealing the limitations of current
benchmarks in multi-scene editing. While many state-of-
the-art models have achieved impressive results on conven-
tional benchmarks, they struggle to generalize to more di-
verse, multi-scene editing tasks that are present in AnyEdit-
Test. This performance drop highlights the limitations of
traditional benchmarks when adapting to the increased di-
versity of multi-scene editing. In contrast, AnyEdit-Test in-
troduces a broader range of editing scenes, making it a more
accurate reflection of real-world scenarios.

G. Implementation Details
G.1. AnySD Architecture
AnySD is a diffusion model designed to handle a broad
range of editing tasks through language-based instructions.
Given the distinct demands of each edit type, which require
the model to selectively focus on different elements—such

as faithfully preserving visual likeness in visual instructions
or altering style while retaining the original image composi-
tion in style transfer—we adopt a Mixture of Experts (MoE)
architecture [18].

The visual condition cV is integrated into the pretrained
UNet [31] by the adapted modules with decoupled cross-
attention to avoid disrupt the edit instruction condition.
Each MoE block share the same language attention layer
but diverse in the attention for cV and the weights are dis-
tributed by the router based on the task embedding.

In the original SD model, given the query features Z and
the text features zt, the output of cross-attention Z′ can be
defined by the following equation:

Z′ = Attention(Q,K,V) = Softmax(
QK⊤
√
d

)V, (1)

where Q = ZWq , K = ztWk, V = ztWv are the query,
key, and values matrices of the attention operation respec-
tively, and Wq , Wk, Wv are the weight matrices of the
trainable linear projection layers.

To achieve separate attention mechinism, we add a new
cross-attention layer for each cross-attention layer in the
original UNet model to insert image features. Given the
cV , the output of new cross-attention Z′′ is computed as
follows:

Z′′ = Attention(Q,K′,V′) = Softmax(
Q(K′)⊤√

d
)V′,

(2)

where, K′ = cvW
′
k and V′ = cvW

′
v are the query, key,

and values matrices from the image features. W′
k and W′

v

are the corresponding weight matrices. In order to speed
up the convergence, W′

k and W′
v are initialized from Wk

and Wv . Then, we simply add the output of image cross-
attention to the output of text cross-attention:

Znew = Softmax
(
QK⊤
√
d

)
V + Softmax

(
Q(K′)⊤√

d

)
V′

(3)

G.2. CFG for Three Conditionings
AnySD is based on the latent diffusion model architec-

ture [29, 30, 34] to support high-resolution image genera-
tion and incorporated variational autoencoder [12] with en-
coder E and decoder D, with estimating the score [9] of a
data distribution. To support image conditioning, we add
additional input channels to the first convolutional layer on
the simple text to image diffusion model [30], concatenat-
ing zt and E(cI), following InstructPix2Pix [2].

For an image x, the diffusion process adds noise to the
encoded latent z = E(x) producing a noisy latent zt where
the noise level increases over timesteps t ∈ T . We learn a
network ϵθ that predicts the noise added to the noisy latent

zt given original image conditioning cI , text edit instruction
conditioning cT and visual prompt conditioning cV . We
minimize the following latent diffusion objective:

L = EE(x),E(cI),cT ,ϵ∼N (0,1),t

[
∥ϵ−ϵθ(zt, t, E(cI), cT , cV))∥22

]
(4)

Classifier-free diffusion guidance (CFG) [7, 15] effec-
tively shifts probability mass toward data where an im-
plicit classifier pθ(c|zt) assigns high likelihood to the con-
ditioning c. Training for unconditional denoising is done
by simply setting the conditioning to a fixed null value
c=∅ at some frequency during training. At inference time,
with a guidance scale s ≥ 1, the modified score estimate
ẽθ(zt, c) is extrapolated in the direction toward the condi-
tional eθ(zt, c) and away from the unconditional eθ(zt,∅).

ẽθ(zt, c) = eθ(zt,∅) + s · (eθ(zt, c)− eθ(zt,∅)) (5)

For our task, the score network eθ(zt, cI , cT , cV) has
three conditionings: the input image cI , text instruction cT
and visual prompt cV . We introduce two guidance scales,
sI , sT and sV which can be adjusted to trade off how
strongly each condition. Our modified score estimate is as
follows:

ẽθ(zt, cI , cT , cV) = eθ(zt,∅,∅,∅)

+ sI · (eθ(zt, cI ,∅,∅)− eθ(zt,∅,∅,∅))

+ sT · (eθ(zt, cI , cT ,∅)− eθ(zt, cI ,∅,∅))

+ sV · (eθ(zt, cI , cT , cV)− eθ(zt, cI , cT ,∅))

(6)

G.3. Classifier-free Guidance Details
As discussed in Section G.2, we apply classifier-free guid-
ance with respect to three conditionings: the input image
cI , the text instruction cT and the visual prompt with task
embedding cV . We introduce separate guidance scales sI ,
sT and sV that enable separately trading off the strength of
each conditioning.

When ignoring cV , we can have the modified score esti-
mate as InstructPix2Pix [2]:
ẽθ(zt, cI , cT) = eθ(zt,∅,∅)

+ sI · (eθ(zt, cI ,∅)− eθ(zt,∅,∅))

+ sT · (eθ(zt, cI , cT)− eθ(zt, cI ,∅))

Below is the modified score estimate for our model with
classifier-free guidance on three conditions (copied from
Equation 6):

ẽθ(zt, cI , cT , cV) = eθ(zt,∅,∅,∅)

+ sI · (eθ(zt, cI ,∅,∅)− eθ(zt,∅,∅,∅))

+ sT · (eθ(zt, cI , cT ,∅)− eθ(zt, cI ,∅,∅))

+ sV · (eθ(zt, cI , cT , cV)− eθ(zt, cI , cT ,∅))

Our generative model learns P (z|cI , cT), the probabil-
ity distribution of image latents z = E(x) conditioned
on an input image cI , a text instruction cT and the visual
prompt with task embedding cV . We arrive at our partic-
ular classifier-free guidance formulation by expressing the
conditional probability as follows:

P (z|cT , cI , cV) =
P (z, cT , cI , cV)

P (cT , cI , cV)

=
P (cT |cI , cV , z)P (cI |cV , z)P (cV |z)P (z)

P (cT , cI , cV)

Diffusion models estimate the score [9] of the data dis-
tribution, i.e., the derivative of the log probability. Taking
the logarithm gives us the following expression:

log(P (z|cT , cI , cV)) = log(P (cT |cI , cV , z))
+ log(P (cI |cV , z))
+ log(P (cV |z)) + log(P (z)

− log(P (cT , cI , cV))

Taking the derivative and rearranging we attain:

∇z log(P (z|cT , cI , cV)) =∇z log(P (z))

+∇z log(P (cV |z))
+∇z log(P (ci|cV , z))
+∇z log(P (cT |cI , cV , z))

This corresponds with the terms in our classifier-free
guidance formulation in Equation 6.

G.4. Supporting Tasks for AnySD
In general, the editing tasks supported by AngSD align
with those listed for AnyEdit-Test. For each task, we uti-
lize a distinct learned task embedding of size N (where N
matches the dimensionality of CLIP).

Additionally, there are substantial differences between
various types of tasks. Consequently, we employ a Mix-
ture of Experts (MoE) framework. Specifically, our expert
categorization is detailed in Table 2.

G.5. Training Details
Stage I: Instruction Understanding. In this stage, we
use the dataset type of background change, tone trans-
fer, remove, replace, add, color, and appearance change in
AnyEdit to enhance the model’s instruction-following ca-
pability. Following prior works [2, 33, 41], we train our
image editing model for 110,000 steps using four 48GB
NVIDIA A6000 GPUs for 280 hours. Specifically, the
training is conducted at a resolution of 256 × 256 with

Expert Supporting tasks
Expert 1 tone transfer, background change,

style transfer, style change
Expert 2 movement, outpaint, resize, rotation
Expert 3 visual bbox
Expert 4 visual depth
Expert 5 visual material transfer
Expert 6 visual reference
Expert 7 visual scribble
Expert 8 visual segment
Expert 9 visual sketch

Table 2. Expert division for various editing tasks of AnySD.

a total batch size of 1024 (gradient accumulation steps=2,
batch size=128 per GPU). We apply random horizontal flip
augmentation and crop augmentation, where images are
first randomly resized between 256 and 288 pixels, followed
by cropping to 256 × 256. The model is trained with a learn-
ing rate of 10−4, without any learning rate warm-up. We
initialize our model using the EMA weights from the Sta-
ble Diffusion 1.5 checkpoint [30] and adopt other training
configurations from the publicly available Stable Diffusion
codebase. Although the model is trained at a resolution of
256 × 256, it generalizes well to a resolution of 512 × 512
during inference. All results presented in this paper are gen-
erated at 512 × 512 resolution, with an Euler ancestral sam-
pler and the denoising variance schedule proposed by [10].

Stage II: Task Tuning. In the second stage, we train our
model on the entire AnyEdit dataset to adapt the model to
the task-specific editing granularity. We utilize the task em-
bedding and each expert is described in Appendix G.4. Un-
like the first stage, we do not use EMA (Exponential Mov-
ing Average) for training [8]. Additionally, we set the train-
ing resolution to 512 × 512, compared to 256 × 256 in the
first stage, to achieve better editing results for specific tasks.
The model is trained with a learning rate of 10−4, with-
out any learning rate warm-up. The second stage is trained
for 400,000 steps using eight 48GB NVIDIA A6000 GPUs
over approximately 150 hours.

G.6. Baselines Details
We establish the models in Table 3 as baselines, orga-
nized into two categories: instruction-based and specific
image editing methods. The former utilizes natural instruc-
tions to guide the editing process, while the latter relies on
global descriptions of the target image to enable editing.
Instruction-based image editing methods include Instruct-
Pix2Pix [2], HIVE [43], UltraEdit [44], EMU-Edit [33], and
MagicBrush [11]. The specific image editing methods in-
clude Null Text Inversion [21], while the visual condition
editing methods include Uni-ControlNet [45].

Instruction-Based Editing Methods:

• InstructPix2Pix [2]: Utilizes automatically generated
instruction-based image editing data to fine-tune Stable
Diffusion [29], enabling instruction-based image editing
during inference without requiring any test-time tuning.
We use the official Hugging Face to implement it.

• HIVE [43]: Trained with supplementary data akin to In-
structPix2Pix, HIVE undergoes further fine-tuning using
a reward model derived from human-ranked data. No-
tably, the edited output of HIVE is not square; instead,
it is scaled to preserve the original aspect ratio, with the
longer side resized to 512 pixels. We utilized two models,
the weighted reward (SD1.5) and the conditional reward
(SD1.5), referred to as HIVEw and HIVEc, respectively.

• UltraEdit [44]. It is trained on nearly 4 million
instruction-based editing samples based on the Stable
Diffusion 3 [32] and supports free-form and mask-form
inputs to enhance editing performance. To ensure com-
parison fairness, we utilize its freeform model for all
experiments. Notably, since it is trained on SD3, its
performance cannot accurately reflect the improvements
brought by its editing data.

• EMU-Edit [33]. It is a fine-tuned editing model that
integrates recognition and generation tasks. Although
it provides promising results, the model is not open-
sourced. Therefore, we only conduct comparisons of it
and AnyEdit on public benchmarks to demonstrate the su-
periority of our approach.

• MagicBrush [11]: MagicBrush curates a well-structured
editing dataset with detailed human annotations and
fine-tunes its model on this dataset using the Instruct-
Pix2Pix [2] framework. Therefore, we use this as a base-
line to fairly compare the improvement in editing capabil-
ities brought by the AnyEdit dataset in our experiments.
Specific Editing Methods:

• Null Text Inversion [21]: This method inverts the source
image using the DDIM [34] trajectory and performs ed-
its during the denoising process by controlling cross-
attention between text and image. Notably, Null Text In-
version requires that ”attention replacement editing can
only be applied to prompts of the same length.” Therefore,
if the input and output captions differ in length, we align
the word count by truncating the longer caption. Addi-
tionally, it is worth mentioning that the official repository
performs a center crop when processing non-square im-
ages, and we adhered to this setting.
Visual Condition Methods:

• Uni-controlnet [45]. Uni-ControlNet categorizes condi-
tions into two groups: local and global. By adding only
two additional adapters, the cost of fine-tuning and the
model size are significantly reduced. For local controls,
we introduce a multi-scale conditional injection strategy,
while for global controls, a global condition encoder is
used to convert them into conditional tokens, which then

interact with the incoming features. To let it support vi-
sual reference editing, we use the HED condition as the
channel of reference image input.

Method Configuration
InstructPix2Pix [2] num inference steps=10,

image guidance scale=1
MagicBrush [41] seed=42, guidance scale=7

num inference steps=20,
image guidance scale=1.5

UltraEdit [44] negative prompt=””,
num inference steps=50,
image guidance scale=1.5,
guidance scale=7.5

HIVEw [43] steps=100
text cfg scale=7.5,
image cfg scale=1.5

HIVEc [43] steps=100
text cfg scale=7.5,
image cfg scale=1.5

Null-Text [21] cross replace steps.default=0.8,
self replace steps= 0.5,
blend words=None,
equilizer params=None

Uni-controlnet [45] num samples = 1
image resolution = 512
strength = 1
global strength = 1
low threshold = 100
high threshold = 200
value threshold = 0.1
distance threshold = 0.1
alpha = 6.2
ddim steps = 50
scale = 7.5
seed = 42
eta = 0.0
a prompt = ’best quality, ex-
tremely detailed’
n prompt = ’longbody, lowres,
bad anatomy, bad hands, missing
fingers, extra digit, fewer digits,
cropped, worst quality, low qual-
ity’

Table 3. Configuration of the baselines for AnyEdit-Test. We
strictly adhered to the default hyperparameters provided in the offi-
cial repositories or Huggingface implementations of these baseline
models.

G.7. Details on Benchmarks and Metrics
Metrics and code. For metrics evaluation, we closely fol-
low the MagicBrush evaluation script without any modifi-
cations. Following previous works [1, 41, 44], we employ
L1 metrics to measure pixel-level differences between the

generated and ground truth images. Additionally, CLIP and
DINO similarities are used to assess the overall similarity
with the ground truth, while CLIP-T measures text-image
alignment based on local descriptions and the CLIP embed-
ding of generated images. Furthermore, CLIP text-image
similarity between the edited image and the output caption,
as well as CLIP text-image direction similarity (CLIPdir),
are employed to evaluate the model’s instruction-following
ability. Specifically, CLIPdir measures the agreement be-
tween changes in caption embedding and changes in im-
age embedding. While the Emu Edit Test eliminates bias
and overfitting at the image level by not providing ground
truth images, the evaluation metrics still implicitly assess
the model’s editing capabilities.
EMU-Edit-Test. We observe that the original EMU-
Edit [33] paper and dataset don’t specify the versions of
CLIP [25] and DINO [3] used. To maintain consistency
with other benchmarks, we follow the settings from the
MagicBrush repository [41], modifying only the evaluation
dataset to EMU-Edit-Test.
MagicBrush-Test. MagicBrush is designed to evaluate
both the single-turn and multi-turn image editing capabil-
ities of models. It provides annotator-defined instructions
and editing masks, along with ground truth images gener-
ated by DALLE-2 [26], facilitating a more effective metric-
based assessment of the model’s editing performance. How-
ever, the dataset suffers from inherent biases. During data
collection, annotators are instructed to use the DALLE-2
image editing platform to generate the edited images, mak-
ing the benchmark biased towards images and editing in-
structions that the DALLE-2 editor can successfully follow.
This bias may limit the dataset’s diversity and complexity.
The baseline results in Table 4 of the main paper correspond
to EMU-Edit [33].

H. Qualitative and Human Evaluations

H.1. Human Evaluation

We conduct comprehensive human evaluations to assess
both the consistency and image quality of generated images
across three tasks: multiple-choice comparison, pairwise
comparison, and individual image assessment. For each
task, we randomly sample 100 images from AnyEdit-Test
(excluding the visual instruction component). These images
are evenly distributed among evaluators, and where appli-
cable, we report averaged scores. Specifically, we evaluate
three methods, comparing our approach against four SOTA
editing methods: InstructPix2Pix [2], MagicBrush [41],
HIVEw [43], HIVEc [43], UltraEdit (SD3) [44] and our
method.

Multiple-Choice Comparison. In this task, evaluators
select the best-edited image based on consistency and image
quality. As shown in Table 4, our method demonstrates su-

Consistency Image Quality

MagicBrush [41] 10 9
HIVEw [43] 15 17
HIVEc [43] 20 21
UltraEdit (SD3) [44] 13 17
AnySD 42 36

Table 4. Multi-choice comparison of four methods. The numbers
represent the frequency of each method being chosen as the best
for each aspect.

Consistency Image Quality

MagicBrush [41] 0.35 0.27
HIVEw [43] 0.42 0.41
HIVEc [43] 0.47 0.48

UltraEdit (SD3) [44] 0.35 0.37

Table 5. One-on-one comparisons. The numbers in the table indi-
cate the percent of each method being chosen as the better option
compared with the AnySD’s results.

perior performance, significantly surpassing the other meth-
ods, which emphasizes the effectiveness of training on our
AnyEdit dataset. Notably, while MagicBrush and UltraEdit
score highly in automated evaluations, their performance in
human assessments is comparatively lower, especially in in-
struction consistency. This discrepancy highlights the limi-
tations of current automatic metrics, which focus primarily
on image quality and may not fully capture human prefer-
ences, underscoring the need for future research to develop
more robust and aligned evaluation metrics.

One-on-One Comparison.The one-on-one comparison
provides a detailed and nuanced assessment of the edited
results by juxtaposing them with robust baselines. Evalu-
ators are instructed to select the preferred option based on
both consistency and image quality. As shown in Table 5,
AnySD consistently outperforms the alternatives in both as-
pects, with a majority of evaluators favoring AnySD’s re-
sults in these direct comparisons.

Individual Evaluation. The individual evaluation uti-
lizes a 5-point Likert scale to gather subjective feedback on
image quality generated by four distinct models. Evaluators
rate each image from 1 to 5, focusing on both consistency
and overall quality. As shown in Table 6, the results clearly
indicate that AnySD outperforms the other baselines, un-
derscoring the advantages of training or fine-tuning models
on the AnyEdit dataset.

H.2. Qualitative Evaluation on Different Bench-
marks

Detailed Results for EMU-Edit Test. More qualitative re-
sults of the EMU-Edit Test are shown in Figure 9. We ob-
serve that AnySD can effectively distinguish between the
foreground and background of an image solely based on

Consistency Image Quality

MagicBrush [41] 3.3 3.1
HIVEw [43] 4.1 3.8
HIVEc [43] 4.2 4.2
UltraEdit (SD3) [44] 3.7 4.0
AnySD 4.3 4.4

Table 6. Individual evaluation using a 5-point Likert scale. The
numbers in the table represent the average scores calculated for
each aspect.

editing instructions, accurately modifying the background
while preserving the content of the foreground.
Detailed Results for MagicBrush Benchmark. More
qualitative results of the MagicBrush Test are shown in
Figure 10. We visually compare the performance of our
method on local editing with the SOTA mask-based Editing
model (i.e., DALLE-2 [26]). We notice that even without
masks as supervision signals, our method accurately per-
forms edits in specific regions, benefiting from the well-
aligned editing data provided by AnyEdit.
Detailed Results for AnyEdit-Test. More qualitative re-
sults of the AnyEdit-Test are shown in Figure 11, 12, 13.
More qualitative results of high-quality image editing
from AnySD. In Figure 14, we visualize AnySD editing
results on a wide variety of images. We provide different
editing instructions for the same image and observe that our
method consistently achieves high-quality and fine-grained
editing. For example, it successfully modifies underwater
reflections and performs appearance modifications involv-
ing world knowledge. It effectively demonstrates the high
quality of the AnyEdit dataset and the superiority of the
AnySD architecture.
Multi-turn in MagicBrush. Figures 15 and 16 illustrate
the performance of our AnySD model in multi-turn edit-
ing. Compared to Text2LIVE [36], GLIDE [24], Instruct-
Pix2Pix, and MagicBrush, our model demonstrates stronger
consistency, maintaining greater similarity to the original
image even in the final editing rounds. Our results even
surpass the ground truth provided by MagicBrush, further
affirming the high quality of the AnyEdit dataset.
Additional Image Editing Methods. We also evaluate
our image editing model in comparison with other ap-
proaches, including Versatile Diffusion [37], BLIP Diffu-
sion [14], Uni-ControlNet [45], T2I-Adapter [22], Control-
Net Shuffle [42], ControlNet Reference-only [42], and IP-
Adapter [39]. The comparison results are presented in Fig-
ure 17, 18. Compared to other methods, our approach con-
sistently produces superior results in terms of image quality
and alignment with multimodal prompts.

Type Description
Local Editing

Remove Remove a specific object in the image and fill it with a background.
Replace Replace a specific object in the image with a new object.
Add Inserting a new object in the image.
Counting Removing a specified number of objects to satisfy the number requirement.
Color Alter Altering the color of specific objects in the image.
Appearance Alter Altering the appearance (e.g., decoration, texture, illumination) of specific objects in the image.
Action Change Change the action of the specific object in the image.
Textual Change Change the specific textual contents in the image to new textual contents
Material Change Change the material of the specific object in the image.

Global Editing
Background Change Modifying the background of the entire image but not affecting the foreground objects.
Tone Transfer Modifying the overall tone of the image, including changes in time, weather, and seasons.
Style Change Modifying the overall style of the image according to the given style word.

Camera Movement Editing
Movement Move the position viewpoint of a specific object in the image to the left or right or up or down.
Resize Zoom in or zoom out to a specific object in the image.
Outpainting Expanding the overall viewpoint by imagining the surroundings of the image elements of the mask.
Rotation Change Rotate the overall viewpoint of the image to obtain images from different perspectives.

Implicit Editing
Implicit Change Implicitly altering the contents of an image necessitates comprehension rather than explicit instructions.
Relation Change Change the position relationship between two objects (i.e., swap their positions) in the image.

Visual Editing
Image Reference Replace a specific object in the image with the object in the reference image instead of any word.
Material Transfer Transfer the material in the reference image to the specific object in the image.
Style Transfer Transfer the style in the reference image to the specific image.
Visual Bounding Box Utilizing bounding box images as visual conditions images to guide the removal or replacement.
Visual Scribble Utilizing scribble images as visual conditions images to guide the removal or replacement.
Visual Segmentation Utilizing segmentation images as visual conditions images to guide the removal or replacement.
Visual Sketch Utilizing sketch images as visual conditions images to guide the removal or replacement.
Visual Depth Utilizing depth images as visual conditions images to guide the removal or replacement.

Table 7. The Definition of Editing Instruction Types in AnyEdit.

Element Content

System Prompt

You are an assistant that only speaks JSON. Do not write normal text.
The assistant answer is JSON with the following string fields: edit,
edited object, output. Here is the latest conversation between
the Assistant and the User.

Task Description (Model)

Hi, My job is to take a given caption (input) and to output the
following: an instruction for adding an object to the image (edit), the
object to add (edited object), and the caption with the object
(output). Please help me do it. I will give you the input, and you
will help.

Output Format

When you reply, use the following format: {’edit’:
’<instruction>’, ’edited object’: ’<object>’,
’output’: ’<caption>’}. Construct the instruction with one
of the following instruction words: [place, add, include]. Don’t
include any \ or edit any actions in the instruction.

Initial Message from LLM
Sure, I’d be happy to help! Just provide me with the input (the
original caption), and I’ll generate the instruction, edited object, and
output caption for you. Let’s get started!

Example Input User input: Beautiful cat with mojito sitting in a cafe on the street.
Example Output from
LLM

{’edit’: ’add a hat to the cat’, ’edited object’: ’hat’, ’output’:
’Beautiful cat wearing a hat with mojito sitting in a cafe on the street.’}

Constrained Editing Instruction Generation

Input {caption} from real-world image-text pairs or counterfactual
synthetic datasets with {editing type} requirements from users

Response

{model generated edit instructions in JSON
format}. An example of editing data is: { ”edit”: ”change the
airplane to green”, ”edited object”: ”airplane”, ”input”: ”a small
airplane sits stationary on a piece of concrete.”, ”output”: ”A green
small airplane sits stationary on a piece of concrete.”, ”edit type”:
”color alter”, ”visual input”: ”None”, ”image file”:
”COCO-train2014-000000521165.jpg”, ”edited file”: ”xxxxx.jpg” }”

Table 8. Prompts constraints for LLMs to write edit instructions and captions.

Add a chef in the
kitchen

Turn two red
flowers into one

Place two stones on the
left side of the trestle

Follow the depth image [V*] to
remove the train

Place a basket with fresh
fruit next to the bear

Change the style to
bubble

Change ‘CROCOLILE’
to ‘COBRA’

Follow the layout bounding box
[V*] to remove birds

Make the cat wear
a bow tie

Place half of the pear
on the left side

Change the
weather to storm

Follow the segment image [V*] to
remove the motorcycle

Turn the background
to a garden

Remove the computer Remove the plane Follow the give scribble [V*] to
replace the toilet with a jar

Figure 2. More Examples of AnyEdit dataset (Part 1). textual instruction-based (first three columns) and visual instruction-based (last
column) image editing.

Remove the horse
running in the field

The flower moves
to the left

Make the horses
prancing with ribbons

Reduce the flower
to one

Follow the sketch [V*] to replace
the folks with a robot

Move the three balls to
the right of the racket

Complete the
image as you can

Replace the hot dog
with a sandwich

Replace the television with a
[V*]

Change the color of
plane to gold

Change the material
of the bus to fabric

Shift the television
in the image

Change the material of apple
like [V*]

Minify the zebra in
the image

What would
happen if he falls?

Replace the elephant with a
[V*]

Figure 3. More Examples of AnyEdit dataset (Part 2). textual instruction-based (first three columns) and visual instruction-based (last
column) image editing.

Figure 4. More Examples of AnyEdit-Test with local editing categories.

Remove the woman on the

right

Remove the person Remove the man Remove the umbrella

Replace the train with a bus Replace the toilet with a

chair

Replace the elephant with a

seal

Change the cake to a pie

Include a butterfly landing

on its mane

Add a hot air balloon in the

sky

Add a candle on the cake Add a person sitting in the

chair

Alter the color of frame to

orange

Change the color of man to

pink

Alter the color of bus to

lime

Change the color of fire

hydrant to lavender

Make the bears wearing

tiny hats

Make the horses wearing

garlands

Make the zebras wear tutus Make it wear a pair of

glasses

Change the material of

seagulls like aluminum foil

Change the material of

rams like corduroy

Change the material of

horse like wood

Change the material of

bench like foliage

Make the action of the man

to cheering

Change the action of the

person to reading

Change the action of the

black bear to hugging

Make the action of the dog

to sleeping

Change the text 'amour' to

'love'

Change the text 'DRAGEES' to

'DRAGONES'

Change the text 'SE' to

'South East'

Replace the text 'FORNET'

with 'FOREIGN'

Local Editing

Increase pears from two to

three

Change the flower from one

to two

Turn into a ship Remove two postcards

R
em

o
v
e

R
ep

la
ce

A
d

d
C

o
lo

r
A

lt
er

A
p

p
ea

ra
n
ce

A
lt

er
M

at
er

ia
l

C
h
an

g
e

A
ct

io
n

C
h
an

g
e

T
ex

tu
al

C
h
an

g
e

C
o

u
n
ti

n
g

Alter the background to a

river

Alter the background to a

garden

Alter the background to a

beachside

Turn the background to a

picnic blanket

Change the season to autumn Change the weather to snow Change the weather to stormy Change the weather to heavy

rain

Change the style of the image

to 8bit

Replace the style of the image

to contrast

Replace the style of the image

to gothic

Change the style of the image

to bubbles

Global Editing

B
ac

k
g
ro

u
n
d

C
h
an

g
e

T
o

n
e

T
ra

n
sf

er

S
ty

le

C
h
an

g
e

Figure 5. More Examples of AnyEdit-Test with global editing categories.

Imagine the image as you can Complete the image as you can Imagine the image as you can Outpaint the image as you can

Move the flag in the image Shift the pepper in the image Shift the person in the image Move the horse in the image

Rotate the telephone

counterclockwise

Turn the vessel clockwise Make the bag clockwise Turn the bag clockwise

Camera Movement

O
u
tp

ai
n
ti

n
g

M
o

v
em

en
t

R
o

ta
ti

o
n

Figure 6. More Examples of AnyEdit-Test with camera movement editing categories.

Visual

Follow the given depth image [V*] to

replace zebra with giraffe

Watch the given depth image [V*] to remove

cat

Follow the given depth image [V*] to

replace vase

Follow the given bounding box [V*] to

erase the man

Follow the given bounding box [V*] to replace

the sandwiches to cookies

Follow the given bounding box [V*] to replace

the bus to a truck

Follow the given scribble [V*] to replace

the cat with a snake

Watch the given scribble [V*] to change the

toilet to a sink

Follow the given bounding box [V*] to replace

the bus to a truck

Refer to the given segment image [V*] to

remove giraffe

Watch the given segment image [V*] to remove

rugby player
Follow the given bounding box [V*] to replace

the bus to a truck

Follow the given depth image [V*] to

replace zebra with giraffe

Watch the given sketch [V*] to change the

zebras to giraffes

Follow the given depth image [V*] to

replace vase

Replace the child to a [V*] Change the vase to a [V*] Replace the skateboarder with a [V*]

Change the material of elephant like [V*] Change the material of cart like [V*] Change the material of plane like [V*]

V
is

u
al

D
ep

th

V
is

u
al

L
ay

o
u
t

V
is

u
al

S
cr

ib
b

le

V
is

u
al

S
eg

m
en

t

V
is

u
al

S
k
et

ch

V
is

u
al

R
ef

er
en

ce

V
is

u
al

 M
at

er
ia

l

T
ra

n
sf

er

Figure 7. More Examples of AnyEdit-Test with visual editing categories.

What would happen if zebras start

running?
What would happen if the sun

never went down?
What will happen if the horse is

not laying on the ground?
What will happen if a person sits on

the park bench?

Place two yellow flowers in the

middle of the table

Move the red bow from the left

side to the right

Place the flower in the upper

left corner

The red flower moves to the left

side of the grass

Implicit

Im
p
li
ci
t

R
el
at
io
n

Figure 8. More Examples of AnyEdit-Test with implicit editing categories.

local
remove replace add color appearance material change action textual counting

InstructPix2Pix [2]
CLIPim ↑ 0.664 0.779 0.832 0.862 0.770 0.700 0.674 0.744 0.803
CLIPout ↑ 0.227 0.276 0.302 0.318 0.308 - 0.228 0.298 0.272
L1 ↓ 0.146 0.188 0.134 0.162 0.160 0.168 0.167 0.190 0.149
DINO ↑ 0.408 0.537 0.706 0.773 0.593 0.369 0.413 0.694 0.590
MagicBrush [41]
CLIPim ↑ 0.849 0.814 0.930 0.826 0.843 0.809 0.754 0.759 0.875
CLIPout ↑ 0.264 0.289 0.321 0.305 0.319 - 0.272 0.312 0.264
L1 ↓ 0.076 0.143 0.071 0.112 0.084 0.111 0.203 0.157 0.100
DINO ↑ 0.783 0.604 0.897 0.667 0.739 0.570 0.548 0.774 0.731
HIVEw [43]
CLIPim ↑ 0.750 0.788 0.914 0.853 0.819 0.764 0.826 0.801 0.866
CLIPout ↑ 0.237 0.282 0.312 0.307 0.313 - 0.291 0.318 0.266
L1 ↓ 0.118 0.184 0.079 0.114 0.147 0.126 0.155 0.139 0.122
DINO ↑ 0.586 0.600 0.857 0.779 0.690 0.536 0.735 0.838 0.738
HIVEc [43]
CLIPim ↑ 0.823 0.778 0.932 0.894 0.864 0.785 0.874 0.807 0.899
CLIPout ↑ 0.254 0.284 0.312 0.309 0.309 - 0.308 0.319 0.267
L1 ↓ 0.099 0.167 0.066 0.097 0.105 0.103 0.147 0.129 0.100
DINO ↑ 0.728 0.584 0.891 0.850 0.795 0.594 0.811 0.871 0.800
UltraEdit (SD3) [44]
CLIPim ↑ 0.806 0.805 0.925 0.851 0.817 0.764 0.827 0.854 0.880
CLIPout ↑ 0.262 0.295 0.323 0.320 0.320 - 0.292 0.344 0.273
L1 ↓ 0.087 0.151 0.072 0.091 0.100 0.108 0.158 0.127 0.089
DINO ↑ 0.709 0.615 0.867 0.791 0.729 0.522 0.724 0.890 0.764
Null-Text [21]
CLIPim ↑ 0.752 0.710 - 0.814 0.785 - 0.838 0.764 -
CLIPout ↑ 0.250 0.247 - 0.274 0.285 - 0.298 0.305 -
L1 ↓ 0.235 0.253 - 0.227 0.239 - 0.243 0.275 -
DINO ↑ 0.598 0.384 - 0.695 0.675 - 0.732 0.764 -
AnySD w/ AnyEdit (Ours)
CLIPim ↑ 0.851 0.853 0.946 0.896 0.877 0.811 0.873 0.763 0.898
CLIPout ↑ 0.265 0.292 0.322 0.313 0.309 - 0.306 0.303 0.263
L1 ↓ 0.103 0.123 0.052 0.061 0.051 0.084 0.145 0.136 0.088
DINO ↑ 0.785 0.688 0.921 0.855 0.840 0.602 0.782 0.800 0.819

Table 9. Comparison of Methods on AnyEdit-Test (Part 1). ’-’ indicates ’not applicable’.

global camera implicit
background tone transfer style change movement outpaint rotation resize implicit relation

InstructPix2Pix [2]
CLIPim ↑ 0.680 0.860 0.702 0.805 0.563 0.675 0.755 0.762 0.826
CLIPout ↑ 0.259 0.304 - - - - - - 0.288
L1 ↓ 0.221 0.098 0.221 0.131 0.290 0.148 0.141 0.212 0.167
DINO ↑ 0.411 0.804 0.354 0.639 0.341 0.361 0.566 0.538 0.577
MagicBrush [41]
CLIPim ↑ 0.739 0.789 0.664 0.863 0.561 0.791 0.845 0.819 0.910
CLIPout ↑ 0.268 0.287 - - - - - - 0.280
L1 ↓ 0.233 0.213 0.252 0.093 0.353 0.134 0.101 0.189 0.109
DINO ↑ 0.529 0.657 0.292 0.710 0.344 0.575 0.725 0.622 0.800
HIVEw [43]
CLIPim ↑ 0.764 0.816 0.706 0.872 0.582 0.774 0.888 0.784 0.858
CLIPout ↑ 0.280 0.293 - - - - - - 0.284
L1 ↓ 0.202 0.175 0.212 0.131 0.328 0.135 0.107 0.202 0.119
DINO ↑ 0.635 0.719 0.383 0.732 0.328 0.620 0.796 0.572 0.697
HIVEc [43]
CLIPim ↑ 0.822 0.833 0.705 0.926 0.665 0.848 0.912 0.809 0.914
CLIPout ↑ 0.294 0.293 - - - - - - 0.284
L1 ↓ 0.177 0.182 0.401 0.112 0.349 0.129 0.093 0.180 0.093
DINO ↑ 0.777 0.748 0.202 0.866 0.428 0.739 0.861 0.627 0.829
UltraEdit (SD3) [44]
CLIPim ↑ 0.790 0.795 0.730 0.867 0.705 0.765 0.872 0.825 0.887
CLIPout ↑ 0.293 0.301 - - - - - - 0.281
L1 ↓ 0.181 0.184 0.208 0.106 0.372 0.139 0.086 0.176 0.093
DINO ↑ 0.701 0.709 0.448 0.762 0.612 0.523 0.813 0.642 0.764
Null-Text [21]
CLIPim ↑ 0.755 0.750 - - - - - - -
CLIPout ↑ 0.285 0.269 - - - - - - -
L1 ↓ 0.251 0.289 - - - - - - -
DINO ↑ 0.617 0.608 - - - - - - -
AnySD w/ AnyEdit (Ours)
CLIPim ↑ 0.819 0.836 0.710 0.870 0.738 0.826 0.898 0.825 0.908
CLIPout ↑ 0.300 0.302 - - - - - - 0.289
L1 ↓ 0.169 0.115 0.192 0.069 0.189 0.122 0.060 0.169 0.091
DINO ↑ 0.744 0.811 0.385 0.782 0.682 0.685 0.832 0.643 0.822

Table 10. Comparison of Methods on AnyEdit-Test (Part 2). ’-’ indicates ’not applicable’.

Visual
visual depth visual sketch visual scribble visual segment visual bbox material transfer visual reference

Uni-controlnet [45]
CLIPim ↑ 0.741 0.763 0.770 0.716 0.734 0.642 0.652
CLIPout ↑ 0.246 0.259 0.253 0.246 0.253 - 0.234
L1 ↓ 0.271 0.247 0.254 0.281 0.214 0.278 0.275
DINO ↑ 0.503 0.576 0.531 0.421 0.512 0.241 0.308
AnySD w/ AnyEdit (Ours)
CLIPim ↑ 0.780 0.803 0.805 0.770 0.811 0.849 0.714
CLIPout ↑ 0.250 0.268 0.258 0.252 0.258 - 0.260
L1 ↓ 0.177 0.164 0.158 0.181 0.125 0.090 0.121
DINO ↑ 0.612 0.663 0.627 0.607 0.687 0.712 0.488

Table 11. Comparison of Methods on AnyEdit-Test (Part 3). ’-’ indicates ’not applicable’.

Input IP2P MagicBrush EmuEdit UltraEdit
UltraEdit
w/ region Ours

Change the background to a classroom.

Change the background to a Smurf village

Change the background to Hawaii.

Make the background a fall day with lots of trees

Figure 9. More qualitative results of the EMU-Edit Test for the editing of background change.

Input Mask DALL-E2 (w mask) Ours (w/o mask)

Add pepperoni and cream to the toppings.

Let the man wear a red tie.

Let the lemon be replaced by an orange.

Figure 10. More qualitative results of the MagicBrush Test for local editing. The mask is used solely to supervise the editing process in
DALLE-2 [26] and is not provided as input to our method.

Input IP2P MagicBrush UltraEdit (SD3)HIVE-c Ours

Make the
zebras wear
tutus

Make the men
wearing
superhero
costumes

Alter the
background to
a river

Alter the
background to
a meadow

Alter the
background to
a library

Change the
color of cows
to pink

Turn the color
of bus to blue

Remove the
motorcycle

Add a tennis
ball flying
towards her

Figure 11. More qualitative evaluation of our model trained on AnyEdit across AnyEdit-Test benchmark (Part I).

Input IP2P MagicBrush UltraEdit (SD3)HIVE-c Ours

Remove the
frisbee

Replace the
toilet with a
kitchen table
and chairs

Replace the
umbrella with
a hat

Change the
style of the
image to
comic

Change the
style of the
image to
gothic

Change the
season to
autumn

Change the
color tone to a
cool tone

Change the
season to
winter

Add a tennis
ball flying
towards her

Figure 12. More qualitative evaluation of our model trained on AnyEdit across AnyEdit-Test benchmark (Part II).

Change the
material of
elephants like
corduroy

Change the
material of
aircraft like stone

Change the
material of bus
like sponge

change the
material of van
like linen

Watch the given
depth image [V*]
to remove surfer

Uni-controlnet OursInput & Visual Reference

Follow the given
bounding box [V*]
to remove the
sandwiches

Figure 13. More qualitative evaluation of our model trained on AnyEdit across AnyEdit-Test benchmark (Part III).

what would she look
like as a bearded man?

Put on a pair
of sunglasses

Turn her into Dwayne
The Rock Johnson

Make her a
wizard Give her a crownInput

Change the season
to winter

Change the color
of the car to red

Change the color of
the car to yellow

Change the color
of the car to black

Change the car
into a police car

Input

Remove the cookie Exchange the place of the dog and the cat. Add a dog running alongside the boyThe material of flowers changes to plastic

Put a hat on the girl’s head Change the background to a picnic mat Eliminate the moons from five to threeTurn the red car into a black one

Make it evening twilight

Turn this into countryside Make it underwater

Make it ManhattanMake it Hong Kong

Make it in the outer space Make the whether cloudy

Input

Figure 14. Qualitative evaluation of using real images as user inputs for the robustness of our editing model.

MagicBrushInstructionPix2PixText2LIVE OursGLIDEGT

Turn 1: Have the sun rise instead of set

Turn 2: Make two parasailers

Turn 3: Make the ground forest

Figure 15. Qualitative evaluation of multi-turn editing scenario. We provide all baselines their desired input formats (Part I).

MagicBrushInstructionPix2PixText2LIVE OursGLIDEGT

Turn 1: The bed should be red

Turn 2: Put a pile of shoes next to the bed

Turn 3: Could we have a window next to the bed?

Figure 16. Qualitative evaluation of multi-turn editing scenario. We provide all baselines their desired input formats (Part II).

ControlNet Reference only

Versatile Diffusion BLIP Diffusion Uni-ControlNet T2I-Adapter style

ControlNet Shuffle IP-Adapter

Make the girl's hair blue

Ours

ControlNet Reference only

Versatile Diffusion BLIP Diffusion Uni-ControlNet T2I-Adapter style

ControlNet Shuffle IP-Adapter

Make the statue in a
garden with flowers

Ours

Figure 17. Comparison with more other image instruction edit methods (Part I).

ControlNet Reference only

Versatile Diffusion BLIP Diffusion Uni-ControlNet T2I-Adapter style

ControlNet Shuffle IP-Adapter

Let the woman wear a
hat on the beach

Ours

ControlNet Reference only

Versatile Diffusion BLIP Diffusion Uni-ControlNet T2I-Adapter style

ControlNet Shuffle IP-Adapter

What if the clock is in
the Grand Canyon?

Ours

Figure 18. Comparison with more other image instruction edit methods (Part II).

References
[1] Jinbin Bai, Tian Ye, Wei Chow, Enxin Song, Qing-Guo

Chen, Xiangtai Li, Zhen Dong, Lei Zhu, and Shuicheng
Yan. Meissonic: Revitalizing masked generative trans-
formers for efficient high-resolution text-to-image synthesis.
arXiv preprint arXiv:2410.08261, 2024. 7

[2] Tim Brooks, Aleksander Holynski, and Alexei A Efros. In-
structpix2pix: Learning to follow image editing instructions.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 18392–18402, 2023.
2, 3, 5, 6, 7, 8, 18, 19

[3] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the International Conference on Computer Vi-
sion (ICCV), 2021. 8

[4] Xi Chen, Lianghua Huang, Yu Liu, Yujun Shen, Deli Zhao,
and Hengshuang Zhao. Anydoor: Zero-shot object-level im-
age customization. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
6593–6602, 2024. 3

[5] Chee Kheng Chng, Yuliang Liu, Yipeng Sun, Chun Chet Ng,
Canjie Luo, Zihan Ni, ChuanMing Fang, Shuaitao Zhang,
Junyu Han, Errui Ding, et al. Icdar2019 robust reading
challenge on arbitrary-shaped text-rrc-art. In 2019 Interna-
tional Conference on Document Analysis and Recognition
(ICDAR), pages 1571–1576. IEEE, 2019. 2

[6] COCO-Text. A large-scale scene text dataset based on
mscoco. https://bgshih.github.io/cocotext, 2016. 2

[7] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022. 5

[8] J Stuart Hunter. The exponentially weighted moving aver-
age. Journal of quality technology, 18(4):203–210, 1986. 6

[9] Aapo Hyvärinen and Peter Dayan. Estimation of non-
normalized statistical models by score matching. Journal
of Machine Learning Research, 6(4), 2005. 5, 6

[10] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. Advances in neural information processing systems,
35:26565–26577, 2022. 6

[11] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen
Chang, Tali Dekel, Inbar Mosseri, and Michal Irani. Imagic:
Text-based real image editing with diffusion models. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6007–6017, 2023. 6, 7

[12] Diederik P Kingma. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013. 5

[13] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 4015–4026, 2023. 1

[14] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models. In In-
ternational conference on machine learning, pages 19730–
19742. PMLR, 2023. 9

[15] Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and
Joshua B Tenenbaum. Compositional visual generation with
composable diffusion models. In European Conference on
Computer Vision, pages 423–439. Springer, 2022. 5

[16] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun
Zhu, et al. Grounding dino: Marrying dino with grounded
pre-training for open-set object detection. arXiv preprint
arXiv:2303.05499, 2023. 1

[17] LSVT. Icdar2019 robust reading challenge on
large-scale street view text with partial labeling.
https://rrc.cvc.uab.es/?ch=16, 2019. 2

[18] Saeed Masoudnia and Reza Ebrahimpour. Mixture of ex-
perts: a literature survey. Artificial Intelligence Review, 42:
275–293, 2014. 5

[19] Ashkan Mirzaei, Tristan Aumentado-Armstrong, Marcus A
Brubaker, Jonathan Kelly, Alex Levinshtein, Konstantinos G
Derpanis, and Igor Gilitschenski. Watch your steps: Local
image and scene editing by text instructions. In European
Conference on Computer Vision, pages 111–129. Springer,
2025. 2

[20] MLT. Icdar 2019 robust reading challenge on
multi-lingual scene text detection and recognition.
https://rrc.cvc.uab.es/?ch=15, 2019. 2

[21] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and
Daniel Cohen-Or. Null-text inversion for editing real im-
ages using guided diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6038–6047, 2023. 6, 7, 18, 19

[22] Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian
Zhang, Zhongang Qi, and Ying Shan. T2i-adapter: Learning
adapters to dig out more controllable ability for text-to-image
diffusion models. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 4296–4304, 2024. 9

[23] MTWI. Icpr 2018 challenge on multi-type web images.
https://tianchi.aliyun.com/dataset/137084, 2018. 2

[24] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. Glide: Towards photorealistic image generation
and editing with text-guided diffusion models. arXiv preprint
arXiv:2112.10741, 2021. 9

[25] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 8

[26] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with clip latents. arXiv preprint arXiv:2204.06125, 1
(2):3, 2022. 8, 9, 21

[27] RCTW. Icdar2017 competition on reading chinese text in the
wild. https://rctw.vlrlab.net/dataset, 2017. 2

[28] ReCTS. Icdar 2019 robust reading challenge on reading chi-
nese text on signboard. https://rrc.cvc.uab.es/?ch=12, 2019.
2

[29] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image

synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 1, 5, 7

[30] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10684–10695, 2022. 5, 6

[31] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference,
Munich, Germany, October 5-9, 2015, proceedings, part III
18, pages 234–241. Springer, 2015. 5

[32] Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas
Blattmann, Patrick Esser, and Robin Rombach. Fast high-
resolution image synthesis with latent adversarial diffusion
distillation. arXiv preprint arXiv:2403.12015, 2024. 7

[33] Shelly Sheynin, Adam Polyak, Uriel Singer, Yuval Kirstain,
Amit Zohar, Oron Ashual, Devi Parikh, and Yaniv Taigman.
Emu edit: Precise image editing via recognition and gen-
eration tasks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8871–
8879, 2024. 6, 7, 8

[34] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 5, 7

[35] Yuxiang Tuo, Wangmeng Xiang, Jun-Yan He, Yifeng Geng,
and Xuansong Xie. Anytext: Multilingual visual text gener-
ation and editing. 2023. 2

[36] Chao Xu, Jiangning Zhang, Yue Han, Guanzhong Tian, Xi-
anfang Zeng, Ying Tai, Yabiao Wang, Chengjie Wang, and
Yong Liu. Designing one unified framework for high-fidelity
face reenactment and swapping. In European conference on
computer vision, pages 54–71. Springer, 2022. 9

[37] Xingqian Xu, Zhangyang Wang, Gong Zhang, Kai Wang,
and Humphrey Shi. Versatile diffusion: Text, images and
variations all in one diffusion model. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 7754–7765, 2023. 9

[38] Ling Yang, Bohan Zeng, Jiaming Liu, Hong Li, Minghao
Xu, Wentao Zhang, and Shuicheng Yan. Editworld: Simulat-
ing world dynamics for instruction-following image editing.
arXiv preprint arXiv:2405.14785, 2024. 3

[39] Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-
adapter: Text compatible image prompt adapter for text-to-
image diffusion models. 2023. 9

[40] Xianggang Yu, Mutian Xu, Yidan Zhang, Haolin Liu,
Chongjie Ye, Yushuang Wu, Zizheng Yan, Chenming Zhu,
Zhangyang Xiong, Tianyou Liang, et al. Mvimgnet: A
large-scale dataset of multi-view images. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 9150–9161, 2023. 3

[41] Kai Zhang, Lingbo Mo, Wenhu Chen, Huan Sun, and Yu Su.
Magicbrush: A manually annotated dataset for instruction-
guided image editing. Advances in Neural Information Pro-
cessing Systems, 36, 2024. 6, 7, 8, 9, 18, 19

[42] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3836–3847, 2023. 3, 9

[43] Shu Zhang, Xinyi Yang, Yihao Feng, Can Qin, Chia-Chih
Chen, Ning Yu, Zeyuan Chen, Huan Wang, Silvio Savarese,
Stefano Ermon, Caiming Xiong, and Ran Xu. Hive: Har-
nessing human feedback for instructional visual editing.
arXiv preprint arXiv:2303.09618, 2023. 6, 7, 8, 9, 18, 19

[44] Haozhe Zhao, Xiaojian Ma, Liang Chen, Shuzheng Si, Ru-
jie Wu, Kaikai An, Peiyu Yu, Minjia Zhang, Qing Li, and
Baobao Chang. Ultraedit: Instruction-based fine-grained im-
age editing at scale. arXiv preprint arXiv:2407.05282, 2024.
6, 7, 8, 9, 18, 19

[45] Shihao Zhao, Dongdong Chen, Yen-Chun Chen, Jianmin
Bao, Shaozhe Hao, Lu Yuan, and Kwan-Yee K. Wong.
Uni-controlnet: All-in-one control to text-to-image diffusion
models. Advances in Neural Information Processing Sys-
tems, 2023. 6, 7, 9, 19

[46] Dewei Zhou, You Li, Fan Ma, Xiaoting Zhang, and Yi Yang.
Migc: Multi-instance generation controller for text-to-image
synthesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6818–
6828, 2024. 3

	Overview
	Detailed Dataset Collection Process
	Editing Type Definition
	Diverse Instruction Generation.
	Prompt Constraints
	In-context Examples

	Adaptive Editing Pipelines
	Local Editing
	Global Editing
	Camera Movement Editing
	Implicit Editing
	Visual Editing

	Statistics of AnyEdit
	More Examples of AnyEdit
	AnyEdit-Test Benchmark
	Detailed Experiments of AnyEdit-Test
	Implementation Details
	AnySD Architecture
	CFG for Three Conditionings
	Classifier-free Guidance Details
	Supporting Tasks for AnySD
	Training Details
	Baselines Details
	Details on Benchmarks and Metrics

	Qualitative and Human Evaluations
	Human Evaluation
	Qualitative Evaluation on Different Benchmarks

