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S1. Overview of Supplementary Material

In this supplementary material, we mainly give detailed in-
formation and analyses about prompt engineering, the CoE
approach, and experimental results of the CPE and CoE
local explanations. Specifically, as presented in Sec. S2,
the prompts that are well-designed in this paper include
prompt—com for automatically disentangling and describ-
ing the commonalities of the given VCs, prompt —coe for
generating the local explanations given specific samples,
and prompt—-coe-eval for evaluating the local expla-
nations from three explainability metrics. In Sec. S3, we
present details of the CoE approach, highlighting its dis-
tinguishing qualities. We also discuss the distinctions be-
tween CoE and CoT. In Sec. S4, we give experimental
results of various versions of CPE, including naive CPE,
CPE with clustering, and our final refined version. We
also analyze the CPE results explored from different XAI
methods (i.e., relevance, activation, and maximum mutual
information-based methods) and different model architec-
tures (i.e., ResNet and CLIP). Various examples of VCs,

Table S1. The prompt template of prompt—-com. Before query-
ing the LVLMs, we substitute the curly brackets with actual texts.

[ Prompt for Commonality Disentanglement and Description ]

[System:]

You are a helpful assistant designed to
describe the commonality and specificity
of the given images, and output a JSON
format response.

[User:]

Given {N} images, each containing
highlighted regions, find some common
objects and attributes in these images
and describe each image with words
especially repeated across these images.

Your response should follow these rules:
{Rules}

Your identification process should
follow these steps: {CoT Steps}

Now, please provide your response:
{Response}

their disentangled concept atoms, probabilities, and CPE
values are provided. Besides, we give details on the imple-
mentation of the comparison experiments between human
evaluations and the CPE metric. In the Section S5, we pro-
vide details of the evaluation criteria for linguistic local ex-
planations, along with an overview of the human evaluation
process. Details of the comparison between local linguis-
tic explanations generated by different methods and various
instances of these local explanations are presented.

S2. Prompt Engineering

In this section, we provide a detailed exposition of the three
well-engineered prompts designed to describe commonal-
ities of VCs, aggregate all information along the concept
circuit to enable the CoE to generate local explanations and
evaluate the generated local explanations.

S2.1. Prompt for Commonality Describing

In this paper, we design a sophisticated prompt
prompt—-com to describe the commonalities by a set
of concept atoms. The meticulously crafted prompt
template is presented in Table SI. As discussed in the
main manuscript, this prompt is engineered to accurately



disentangle and summarize the commonalities across mul-
tiple subsets of images utilizing precise terminology drawn
from 13 semantic directions. Additionally, the disentangled
atoms also serve as the foundation for the probability and
CPE calculations. To meet these requirements, this prompt
incorporates some rules along with step-by-step guidance.
The rules outlined below primarily establish 13 semantic
directions and delineate the format for output control.

1. Pay more attention to the
repeated objects or attributes across
these images.

2. Possible objects or attributes
you can use to describe these images
are object category, scene, object
part, color, texture, material,
position, transparency, brightness,
shape, size, edges, and their
relationships.

3. The identified common objects or
attributes must appear simultaneously
in at least 5 images.

4. The identified specific objects
or attributes represent some important
contents of an individual image but
not in the common objects or attributes
found in the previous step.

5. Your description of each image
should be simple and only 3 words.
6. Your response should be in the

format of a JSON file, of which each
key is a simple image index and each
value is an object or attribute.

To enhance the quality of disentanglement and descrip-
tion of atoms, this task is structured into three steps, draw-
ing inspiration from the CoT method.

Step 1, take an overview of all 15
images and summarize all possible
common objects or attributes that
appear simultaneously in at least any
5 of these images.

Step 2, for each individual image,
identify the common objects or
attributes found in Step 1 that also
appear in the current image to describe
the current image.

Step 3, for each individual image,
you can also use some specific
attributes or objects that are not
common across these images to describe
the current image if there is not
enough 3-word description for the
common object or attribute found in
Step 2.

Table S2. The prompt template of prompt-coe. Before query-
ing the LLMs, we substitute the curly brackets with actual texts.

( Prompt for CoE Local Explanations 1

[System: ]

You are an intelligent deep learning model
explainer and you are now explaining the
decision predicted by a deep vision
identification model.

[User:]

Given a prediction of a deep vision model
and its prediction path formulated in the
format of a concept circuit, you should
first judge whether the model prediction
is correct or incorrect and then give the
reason why the prediction is correct or
incorrect based on the following pieces of
information (A, B, C, D, E). You should
generate an aggregated and rigorous
paragraph based on the given information
rather than imagination.

The information: {A, B, C, D, E}

There are some rules for your response:
{Rules}

Positive and negative prediction examples
are given: {Positive Example}, {Negative
Example}

Your inference process should follow these
steps: {CoT Steps}

Now, please provide your response:
{Response}

S2.2. Prompt for CoE Local Explanation

In this paper, we design a prompt prompt-coe for the
LLM to aggregate all information along the concept cir-
cuit and generate a local explanation chain to explain the
decision-making process of a DVM. This explanation chain
is similar to CoT in terms of the structure of the output.
The prompt template is presented in Table S2. The infor-
mation provided in this prompt includes the DVM’s predic-
tion, sample label, image caption, relevant concept explana-
tions derived by applying the CPDF mechanism on the au-
tomatically constructed ACD-B 4,7 dataset, and their cor-
responding relevance values. The concept explanations and
relevance values are presented in a structured format.

In this prompt, the rule set primarily functions to reg-
ulate the output. Furthermore, we develop two examples
of local explanations based on few-shot prompting: a posi-
tive example, wherein the CoE generates local explanations
corresponding to a correct prediction of the DVM, and a
negative example, illustrating the expected local explana-



tion when the DVM prediction is incorrect. Likewise, the
process of CoE generating local explanations adheres to the
CoT method, as detailed below.

Step 1, Based on information A),
which is the model’s prediction, and
information B, which is the ground
truth label of the input image, You
first need to determine whether the
two are semantically equivalent. TIf
they are semantically equivalent,
then the model’s prediction is
considered correct. If the prediction
and the label are not semantically
equivalent, it is considered an
incorrect prediction.

Step 2, Based on the judgment in
Step 1 and the given information C,
D, and E, which include the caption
of the input image, the vision
model’s decision path and the concept
information at each node along the
path, and the concept relevance values
at each node, you need to explain why
the model arrived at this correct
or incorrect prediction. Analyze
the decision process by examining
each concept in the decision path to
determine how they contributed to the
final outcome.

S2.3. Prompt for Evaluating Local Explanations

It is essential to evaluate the generated linguistic local
explanations utilizing LVLMs. As illustrated in Table
S3, to ensure rigor and precision, we meticulously de-
sign a prompt prompt —coe-eval, which primarily com-
prises four components: key information, evaluation cri-
teria, evaluation steps, and rules. The key information
includes the image, prediction, label, and the generated
local explanations. The three explainability evaluation
criteria—Accuracy, Completeness, and User Interpretabil-
ity—are discussed in detail in Sec. S5.1. Each criterion
follows a three-level scoring system (2, 1, 0). These scoring
guidelines are explicitly conveyed to the LVLM. The expla-
nation process also adheres to the CoT method, requiring
the LVLM to first output the scores alongside evidence and
then aggregate these into a final score, as outlined below.
Please first provide evidence of
your evaluation for each criterion
and then provide your score for each
criterion, avoiding any potential bias
and ensuring that the order in which
the responses were presented does not
affect your judgment.

Table S3. The prompt template of prompt-coe-eval. Before
querying the LVLMs, curly brackets are filled with actual texts.

( Prompt for Evaluating CoE Local Explanations W

[System: ]

You are now a scorer for an
interpretability evaluation system
assessing a deep visual model
interpreter.

[User:]

This interpreter provides natural
language explanations of the
decision-making process of a deep
visual model when given an image
input.

Your task is to evaluate and score
the output explanation of the
interpreter based on specified
criteria to determine its quality.

Your input information includes:
{ap, B, C, D}

Based on the four pieces of
information provided above, score
Explanation D according to the
following three criteria. Each
Criteria has its own scoring rules,
and you need to score Explanation D
according to the standards of each
Criteria: {Criteria}

CoT Steps for This Prompt: {CoT
Steps}

Output Control: {Rules}

Now, Please provide your response:
{Response}

Then sum up the above scores of the
three criteria as the total score.

Finally, output the evidence and
scores for these criteria.

S3. Details of the CoE Approach

In this section, we present supplementary details of the CoE
approach, including the formulations of the CPE and the
distinction from CoT.

S3.1. Probability of Concept Atoms and CPE

In this paper, we acquire the probability of concept atoms
by calculating their frequency of occurrence in the disen-



tangled concept atom set .4, given a fixed parameter () and
N. The naive version of probability of i;;, atom is
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As the CPE proposed in this paper serves as an indicator
of the interpretability of concepts and DVMs, we normalize
the entropy value to a range between 0 and 1 by dividing it
by the logarithm of the number total of atoms.

We cluster the atoms in 4, as some disentangled atoms
are semantically equivalent. The probability and CPE of the
clustered atoms in A* are formulated as
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However, there exists a case in which this CPE evalu-
ation becomes ineffective, i.e., when all image patches of
a VC are highly similar, as exemplified in the first row of
Table S4. The concept should ideally exhibit monoseman-
ticity in this scenario. In contrast, the CPE calculated by Eq.
S4 results in a value of 1, as the probabilities of all atoms
are evenly distributed (e.g., each with a probability of 1/3
when P* = 3). To mitigate this problem, we set the mini-
mum number of concept atoms in A* to N, assuming that
each VC contains at least N common atoms. The padding
atoms (in a number of Pad = N—-P*) are each assigned a
frequency of 1. This operation preserves the relative prob-
abilities among the P* atoms, ensuring that more frequent
atoms remain prevalent while less frequent ones retain their
lower counts. Upon completion of these procedures, the
probability and CPE are updated to Eq. 8 and Eq. 9 in the
main manuscript. The experiments are conducted in Sec.
S4.1, showing the effectiveness of our method.

S3.2. Explanation of the Concept

In this paper, we define each channel or neuron of DNNs as
a VC, represented by a set of masked image patches [7, 10].
Notably, some works consider each image patch as a VC
[14], resembling a form of pixel-level semantic segmenta-
tion. Channel-based interpretation can serve as both global
and local explanations for a DVM by decoding and describ-
ing the commonalities among a set of image patches. It
better represents the decision concepts learned internally by
the DVM. In contrast, the latter, identifying the key regions
within a given image, only serves as a local explanation.
Our CoE approach can automatically describe these two di-
rections, as both take the form of image patches.

S3.3. Discussion Between CoE and CoT

The CoE approach proposed in this paper draws inspira-
tion from CoT [4, 6], yet with notable distinctions. CoT di-
rectly guides large-scale models to articulate their decision-
making processes through carefully crafted prompts. How-
ever, it has the following limitations: 1. Each step in the
CoT still relies on the large model’s own capabilities, and
each prediction of the current step remains unexplained; 2.
CoT mainly emerges in LLMs or LVLMs, whereas the ca-
pability for smaller DVMs is insufficient. In contrast, CoE
dissects the DVMs by identifying critical decision concepts
within key layers. These concepts, described in natural lan-
guage, serve as nodes in a chain. CoE aggregates these
nodes to form a coherent explanation chain that elucidates
the DVM’s decision-making process. Although the output
structure resembles that of CoT, the construction of the CoE
explanation chain is achieved by leveraging the general ca-
pabilities of LVLMs to automatically describe the VCs and
construct the explanation chains. Additionally, CoE pro-
vides global conceptual explanations for DVMs while also
possessing the capability to quantify polysemanticity. Thus,
CoE and CoT are notably distinct.

S3.4. Time and Cost of CoE

CoE primarily consists of ACD, CPE, CPDF, and local ex-
planation steps. ACD and CPE can be performed offline and
obtained through a one-off computation process. Building
the global ACD-5 database on ImageNet-val takes 9 hours
and costs $70. After that, online inference for the local ex-
planation of a single image requires 20 seconds and costs
$0.01. Compared to manual labor, this cost is considered
acceptable.

S4. Experiments on CPE

In this section, we provide additional experiments across
various versions of CPE, XAI methods, model architec-
tures, and illustrative examples of CPE.

S4.1. Various Versions of CPE

The proposed CPE has evolved through three iterations: the
naive version (Eq. S1 and Eq. S2), the clustered version(Eq.
S3 and Eq. S4), and the final refined version (Eq. 8 and
Eq. 9 in the main manuscript). As shown in Fig. SI,
some atoms disentangled for a single concept are seman-
tically equivalent (e.g., barrier and fence, entry and gate),
and many of them exhibit low probabilities. After cluster-
ing through the entailment model, all semantically redun-
dant atoms are consolidated, leading to adjusted atom prob-
abilities and a reduced CPE value. The semantics of the
atoms are mutually exclusive. For a ResNet152 model, 3.5
atoms per concept, on average, are reduced, as illustrated in
Fig. S2. Notably, in the third stage, where polysemanticity
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Figure S1. Examples of two versions of the disentangled concept
atom probability distributions. (a) shows the naive version, while
(b) represents the clustered one. The channel showed here is num-
ber 163 of the output layer of Stage 4 of a ResNet152 model.
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Figure S2. Averaged quantity of disentangled concept atoms. The
average term is the averaged quantity of 4 stages.

is most pronounced, the largest reduction is observed, av-
eraging 4.4 per concept. This highlights the significance of
introducing the entailment model within the CPDF mecha-
nism to cluster redundant semantics.

Furthermore, as shown in Fig. S2, it is evident that con-
cepts of DVMs exhibit polysemanticity, with the fewest dis-
tinct semantics occurring at the final layer (an average of
12.7 non-overlapping semantic atoms) and the most pro-
nounced at stage 3 (18.3). This significantly impairs the in-
terpretability of concepts and DVMs, and the explanations
produced by concept-based XAI methods, underscoring the
importance of quantifying concept polysemanticity and mit-
igating its impact on explanations.

As shown in Fig. S3 and exemplified in the first row of
Table S4, compared with Fig. 3(a) in the main manuscript,
there exist some concepts that require padding. Their com-
monalities display significant uniformity and an evenly dis-
tributed probability pattern, as discussed in Sec. S3.1.
This phenomenon, where the actual level of polyseman-
ticity is relatively low but is still calculated as high CPE,

= Qutput Layer of Stage 1

== QOutput Layer of Stage 3
Output Layer of Stage 4

Concept Index

Figure S3. Clustered CPEs along the channel dimension. The
channel indices are max-normalized. The magenta-highlighted re-
gions emphasize results where commonalities are relatively lim-
ited, yet the computed CPE value is equal to 1.
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Figure S4. Averaged CPE scores on different XAI methods and
different models. The number under the X-axis represents the
model depth. R, A, and M stand for Relevance, Activation, and
Maximum mutual information-based XAI Methods, respectively.

occurs more frequently in stages 1 and 4 of the DVM. As
previously mentioned (discussed in Sec. 4.3 in the main
manuscript), these stages are indeed characterized by gen-
erally lower levels of polysemanticity in their common con-
cepts. After applying the padding operation, as illustrated
in Fig. 3(a) in the main manuscript and the first row of Ta-
ble S4, the corresponding CPE values drop to relatively low
levels. This outcome further substantiates the effectiveness
of the CPE proposed in this paper.

S4.2. Different XAI Methods

In this subsection, we conduct experiments on different
XAI methods, including the relevance-based [ 1], activation-
based [17], and maximal mutual information-based meth-
ods [9]. As illustrated in Fig. S4, the results reveal dis-
tinct trends in CPE across different XAI methods. Specif-
ically, the polysemanticity observed in the activation-based
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Figure S5. Averaged CPE scores on 2 model architectures, i.e.,
ResNet50 and CLIP.

method diminishes as model complexity increases, con-
trasting with the trend exhibited by the relevance-based
method. This result indicates that the choice of the XAI
method E, is critical for concept-based explanations. Given
that relevance-based concepts achieve superior fidelity and
reliability in explanations compared to activation-based
concepts [1], this paper adopts the relevance-based CRP
as the primary F, method. Moreover, concepts derived
from maximal mutual information exhibit lower CPE val-
ues. However, due to the reliance on manually annotated
concepts, this method lacks automation and flexibility, lim-
iting its development on DVMs and hindering a more com-
prehensive comparison with other XAl methods. These re-
sults highlight the versatility of our approach in being appli-
cable to various XAl methods and underscore the necessity
of automating concept construction.

S4.3. Different Model Architectures

We calculate CPE values across different model architec-
tures, including ResNet50 trained on ImageNet [5, 8] and
CLIP-ResNet50 trained on a large-scale vision-language
dataset [3, 12, 13]. As presented in Fig. S5, the vision
branch of the CLIP model exhibits greater polysemanticity.
The general trend aligns with that of the original ResNet,
where polysemanticity is lowest in the abstract stage 4
and peaks in the intermediate stages. Polysemanticity is
high in the shallowest stage. We infer that these results
of CLIP-ResNet50 stem from the constructed global ex-
planation dataset ACD-Bx,,7, which is derived from the
Out-of-Distributed (OOD) ImageNet Validation dataset T
rather than the independent and identically distributed (iid)
vision-language dataset utilized for CLIP’s training. Since
CLIP operates in a zero-shot mode, the representation of
each VC through 15 image patches does not fully align with
the conceptual requirements of the original CLIP model, re-
sulting in increased polysemanticity. Moreover, the vision-

Visual Concept 1 (Upper)

Greater than in the Lower image, score it as 2;
if fewer, score it as 0;

if difficult to distinguish, score it as 1.
B. Pay more attention to the repeated objects or attributes across the highlighted regions.
C. The identified common concepts must appear simultaneously in at least 5 images.
D. Possible objects or attributes you can use to describe these images include:
object category, scene, object parts, color, texture, material, position,
transparency, brightness, shape, size, edges, and their relationships.
Figure S6. Examples of polysemanticity comparisons between hu-

man evaluations and CPE metric.

language dataset utilized for CLIP training encompasses
significantly more categories and samples compared to the
ImageNet dataset, resulting in an increase in the semantic
scope that each concept must represent. This, in turn, ampli-
fies the model’s polysemanticity. Our CPE method not only
captures and precisely represents these phenomena through
the lens of polysemanticity but also proves its effectiveness
under zero-shot conditions, reinforcing the validity of the
proposed approach.

S4.4. Human Evaluation on CPE

In this subsection, we present a comprehensive overview of
the experiments conducted to perform human evaluations
on the CPE metric. We first automatically generate a global
concept explanation dataset ACD-Ba, 7 utilizing the CoE
approach proposed in this paper. By incorporating the man-
ually annotated MILAN ANNOTATION dataset [9], we
construct a comprehensive VC library for this evaluation,
comprising a total of 7,680 VCs. Recognizing the inherent
difficulty for humans to directly quantify polysemanticity
visually, we instead invite participants to compare the rel-
ative degrees of polysemanticity between two VCs. From
this VC library, 300 pairs of VCs are randomly sampled,
each displaying varying degrees of polysemanticity. As il-
lustrated in Fig. S6, each pair is presented to human eval-
uators. Participants are instructed to assign a score of 2 if
the upper VC exhibits more polysemanticity than the lower



Table S4. Additional examples of VCs and their disentangled concept atoms, along with their concept probability distributions and CPE
scores. From top to bottom, the concepts displayed in the table are derived from concepts 141, 366, 1681, and 121 in the fourth stage of a
ResNet152 model. The CPE values increase progressively from the top row to the bottom row.

Visual Concept and Disentangled Concept Atoms Concept Distribution \ CPE
Image 1: [lobster, red, claws], 10
Image 2: [lobster, red, claws],
Image 3: [lobster, red, claws], 08
Image 4: [lobster, red, claws],
Image 5: [lobster, red, claws],
Image 6: [lobster, red, claws], 206
Image 7: [lobster, red, claws], ,_ig
Image 8: [lobster, red, claws], ‘éo 2 0.70
Image 9: [lobster, red, claws], e
Image 10: [lobster, red, claws],
Image 11: [lobster, red, claws], 0.2
Image 12: [lobster, red, claws],
Image 13: [lobster, red, claws], 00
Image 14: [lobster, red, claws], e ;S »
Image 15: [lobster, red, claws] 66‘\ \509 <
Image 1: [dog, muzzle, black], 0.35
Image 2: [dog, muzzle, black],
Image 3: [muzzle, black, plastic], 0301
Image 4: [dog, muzzle, black], 0251
Image 5: [muzzle, black, plastic], ’
Image 6: [muzzle, black, plastic], 20.20-
Image 7: [muzzle, black, yellow], 3
Image 8: [dog, muzzle, black], 80.15- 0.77
Image 9: [muzzle, black, metal], &
Image 10: [dog, muzzle, brown], 0.104
Image 11: [muzzle, black, plastic],
Image 12: [muzzle, black, metal], 0.051
Image 13: [muzzle, brown, leather], 000 . . . . . .
Image 14: [dog, muzzle, black], N © °
Image 15: [dog, muzzle, black] \4}*‘\6 & @éﬁ Q\& & o\é\# @\&\
Image 1: [orange, glow, dark], 0.25
Image 2: [face, mask, colorful],
Image 3: [face, mask, hands], 0.20
Image 4: [face, mask, colorful],
Image 5: [face, mask, transparent], 0154
Image 6: [mask, red, black], £
Image 7: [mask, metallic, face], E
Image 8: [orange, glow, face], 20.101 0.85
Image 9: [mask, face, pattern],
Image 10: [orange, glow, text], 0.054
Image 11: [mask, goggles, dark], ’
Image 12: [face, mask, transparent],
Image 13: [face, mask, hands], 0.00 +—r—r—r—r—rrr T
Image 14: [face, paint, smile], SRS S D FSEL S S S S S
Image 15: [dark, small, red] 0\:@% Q(i*\ s :ﬁd‘\i & ¢ SgF N
R
Image 1: [white, fluffy, dogs], 020
Image 2: [green, bell, peppers], 0.18
Image 3: [deer, standing, trees],
Image 4: [onions, green, peppers], 0.167
Image 5: [two, deer, horns], 0.14
Image 6: [deer, standing, grass], 20_12_
Image 7: [yellow, bell, peppers],
Image 8: [red, green, peppers], Eo-m' 0.88
Image 9: [orange, bell, peppers], 0.084
Image 10: [metallic, vintage, truck],
Image 11: [single, green, pepper], 0.061
Image 12: [green, bell, peppers], 0.04
Image 13: [colorful, bell, peppers], npepepepapepupapeppepepupey SIS
Image 14: [deer, face, closeup], Q& COLDLA ORI O DA S
Image 15: [single, green, pepper] <>°g§ ¢ @Qiégé}g&%é@?s&&ﬁé %Q‘gq




Table S5. Explainability metrics utilized for evaluating the local explanations. These criteria are prompted for both GPT-40 and human-
based scoring systems. Each criterion has a maximum score of 2 points. The total explanation score is 6. The bolded areas represent the

core decision rationale for the scoring process.

Metrics ‘ Score ‘ Details of Each Criterion

Almost all relevant explanations focused on key decision points, essential features,

2 important regions, and background information, with no extraneous or irrelevant
content.

Accuracy 1 Explanation is generally relevant but may contain some minor off-topic or

unnecessary information.

0 Explanation includes a significant amount of irrelevant content, diverging from the
model’s decision-making process and impairing comprehension.

2 Comprehensive explanation covering all major steps, key features, background
information, and relevant concepts of the model’s decision process.

1 Explanation addresses primary decision steps but may slightly overlook some

Completeness information or secondary features.

0 Incomplete explanation lacking essential decision steps or information, making
comprehension challenging.

2 Explanation allows users without specialized knowledge to understand the model’s
decision logic, with clear, straightforward language and smooth readability.

. 1 Explanation is mostly understandable to users with a technical background,; it is
User Interpretability fairly clear but may require some re-reading due to less fluent phrasing or logic.

0 Explanation is difficult to comprehend, with disorganized or unclear language

that obscures the decision process of the model.

one, a score of 1 if the opposite is true, and 1 if the distinc-
tion is unclear. The evaluation guidelines also prompt 13
feasible semantic directions and rules consistent with those
prompted for the CPE metric. All VC pairs are divided into
10 groups, with each group evaluated by three participants.
If the average score exceeds 1, the upper VC is judged to
have greater polysemanticity than the lower one; otherwise,
it is assigned a score of 0. Consistency between these re-
sults and the CPE metric is then calculated, as summarized
in Table 2 in the main manuscript. The results reveal a 75%
agreement between human evaluations and the CPE metric,
thereby demonstrating the validity of the CPE method.

S4.5. Examples of Disentanglement and CPE

In this subsection, we present additional examples illus-
trating the disentanglement of VCs into concept atoms, as
well as the probability distributions and CPE values of the
clustered atoms. As shown in Table S4, the experimen-
tal results align with the analyses presented in Sec. 4.2 in
the main manuscript. The proposed CoE approach effec-
tively and accurately disentangles VCs into linguistic con-
cept atoms. Furthermore, the entailment model success-
fully clusters semantically equivalent atoms into mutually

orthogonal groups, assigning corresponding probabilities to
them. The proposed CPE metric quantifies the polyseman-
ticity of different VCs, with the subjective visual compar-
isons and the CPE results demonstrating consistent trends.
The polysemanticity of the VCs in the table increases pro-
gressively from the first row to the last. Correspondingly,
the disentangled atoms, their associated probabilities, and
the CPE values exhibit consistent changes in alignment with
this trend. These results collectively validate the effective-
ness of the approach proposed in this paper.

SS5. Experiments on CoE Local Explanations

In this section, we elaborate on the evaluation employed to
assess the linguistic local explanations. We also present and
compare additional instances of local explanations gener-
ated by CoE and other methods.

S5.1. Evaluation of Local Explanations

The local explanations are evaluated from three explainabil-
ity evaluation metrics, namely, Accuracy, Completeness,
and User Interpretability [15]. We exclude the fidelity crite-
rion, as CoE finds the key concepts of DVMs through exist-
ing concept circuit methods, inherently aligning its fidelity



Table S6. Comparisons of GPT-40 explanation scores under various scenarios. {: the results of baselines are obtained by applying ACD

and local explanation steps, without CPDF.

Method | Accuracy | Completeness | User Interpretability | Total Explanation
Places365 Dataset [18] (Baseline®) 1.01 1.07 1.04 3.12
CoE on Places365 Dataset (Ours) 1.68 1.69 1.67 5.04
Chest X-ray Dataset [16] (Baseline') 1.55 1.62 1.56 4.73
CoE on Chest X-ray Dataset (Ours) 1.81 1.74 1.76 5.31
ViT-B-16 [2] (Baseline®) 1.18 1.14 1.16 3.48
CoE on ViT-B-16 (Ours) 1.65 1.69 1.58 4.92

Table S7. GPT-4o0 scores on other concept explanation methods.

Method | Acc.| Comp. | User L. | Total
CLIP-Dissect[11] +Descrip.|1.10| 1.13 | 1.08 |3.31

with these approaches. Each metric is assigned three score
levels: 2 points for optimal performance, O points for the
lowest performance, and 1 point for a moderate score, as
presented in Table S5. The maximum score for each metric
is 2, with a total possible score of 6.

These evaluation criteria are provided to both human
evaluators and GPT-4o to score the generated linguistic lo-
cal explanations. To construct the database for GPT-40-
based evaluation, 500 samples are randomly selected from
the ImageNet Validation dataset. We sample from the cor-
rectly and incorrectly predicted instances of the DVM in a
7:3 ratio, in alignment with the accuracy rate. Three meth-
ods, including baseline, CoE without filtering, and CoE, are
evaluated in this paper. They generate local explanations
for these samples. The evaluation prompt for GPT-4o0 is
discussed in Sec. S2.3. Given the complexity of this eval-
uation for humans, we randomly select 100 samples from
the former database to construct the database for human-
based evaluation. The evaluation page, as shown in Fig. S7,
consists of the sampled image, the generated local expla-
nations, and the scoring criteria for the three explainabil-
ity metrics. The three methods are anonymously labeled as
Ex1, Ex2, and Ex3. As for human evaluations, the 100 sam-
ples are divided into 10 groups, with each group consisting
of 30 linguistic explanations assessed by three participants.
The results, presented in Table 4 in the main manuscript,
demonstrate that the CoE approach outperforms the other
two methods across all three explainability metrics, con-
firming the superiority of the proposed approach.

S5.2. Supplemental Quantitative Evaluation Re-
sults

We conduct experiments of CoE on a Transformer archi-
tecture (i.e., ViT-B-16) [2]. As shown in the 6th row of
Table S6, CoE is effective for the Transformer architecture,
achieving an improvement of 1.44 points compared to its

CoE Local Explanation Group A-2 img10168 Ex1

The model outputs a correct result: West Highland white terrier.
Specifically, in the shallowest layer 1 of the model, channel 88 with a
relevance value of 1.0 describes the concept of ‘curved, which might
be related to the curved features of the dog's body or face. In the
deeper layer 2 of the model, channel 103 with a relevance value of
1.0 describes the concept of 'face', channel 94 with a relevance value
of 0.74 describes the concept of 'background’, and channel 162 with
a relevance value of 0.73 describes the concept of ‘animal’. These
concepts are essential for identifying the presence and type of
animal in the image. In layer 3, channel 985 with a relevance value of
1.0 describes the concept of ‘texture’, channel 174 with a relevance
value of 0.85 describes the concept of 'white', and channel 880 with
a relevance value of 0.77 describes the concept of 'fur’, which are all

o Your  highly relevant to the appearance of a West Highland white terrier as
Criteria Score  described in the image caption. Finally, in layer 4, channel 1230 with

a relevance value of 1.0 describes the concept of 'dog, and channel

1280 with a relevance value of 0.87 describes the concept of 'sitting',
aligning perfectly with the caption description of the dog's posture
and identity. Therefore, the model outputs a correct result West
Highland white terrier, as all these concepts are related to the dog
breed in the image.

1. Explanation Accuracy [2,1 or 0]:
2. Explanation Completeness [2,1 or 0]:
3. User Interpretability [2,1 or 0]

Total Score [0~6]

Figure S7. Examples used for evaluating the local explanations
generated by three methods.

baseline (the 5th row). Besides, CoE is tested on two other
real-world and critical applications (i.e., Places365 [18] and
Chest X-ray [16]). Table S6 demonstrates CoE’s consistent
superiority, achieving scores of 5.04 and 5.31 with improve-
ments of 1.92 and 0.58 over their baselines (without con-
sidering polysemanticity). In the medical dataset Chest X-
ray [16], CoE achieves an explanation score of 5.31 since
the category variety in this dataset is relatively small. All
the images depict the human thoracic cavity, and the differ-
ences between categories are minimal. This implies that the
polysemanticity of concepts learned within the network is
more advantageous, enhancing the explainability. We also
compare a CLIP-Dissect [11] method for describing con-
cepts, published in ICLR 2023. As shown in Table S7, the
overall explainability score is 3.31, which is clearly lower
than that of CoE (5.06). CLIP-Dissect generates a single
concept atom per channel, which severely underestimates
the polysemanticity issue, resulting in insufficient explana-
tions. All results demonstrate the robustness and scalability
of the proposed CoE approach.

S5.3. Examples of CoE Local Explanations

In this subsection, we present additional samples to demon-
strate the effectiveness of the proposed CoE approach in
explaining the decision-making process of DVMs. As pre-
sented in Table S8, the experimental results align with the



analyses in Sec. 4.4 in the main manuscript. Nearly all con-
cepts are closely associated with the input images. It infers
the logical relationship between the current concept and the
entire context according to its contents and relevance val-
ues. The final output explanations accurately articulate the
decision pathways underlying the DVM’s predictions.

S5.4. Comparison Between CoE and Baseline

Additionally, we provide a comparative analysis of CoE-
based local explanations with that generated by the baseline
method. As exemplified in Table S9, the concepts provided
from the baseline method exhibit inconsistencies with the
input images, highlighting that disregarding polysemantic-
ity undermines the comprehensibility of local explanations.
In contrast, the CoE approach generates linguistic explana-
tions that encapsulate all indispensable relevant information
for identifying a hog, such as the concept of pig and pink.
These results collectively validate the effectiveness and su-
periority of the CoE approach proposed in this paper.



Table S8. Additional cases of local explanations generated from the CoE approach. The first three rows show the explanations of correct
predictions of the DVM, and the fourth row is reversed. The yellow highlighted regions illustrate the logical relationships identified by
the CoE approach between concepts within the explanation chains and between concepts and their contexts. The green highlighted regions
represent the CoE approach’s final summary and commentary on the explanation chains.

The model outputs a correct result: stone wall. Specifically, in the shallowest layer 1 of the model, channel 88 with a
relevance value of 1.0 describes the concept of smooth, and channel 3 with a relevance value of 0.83 describes the
i concept of ground. These initial detections are fundamental as they set the stage for recognizing more complex

. features. In the deeper layer 2 of the model, channels such as 401 with a relevance value of 1.0 and 103 with a
- relevance value of 0.95 both describe the concept of edges, which are crucial for identifying the boundaries and
~ shapes within the stone wall. Channels 24 and 391 with relevance values of 0.91 and 0.84 respectively describe rocks,
and channel 26 with a relevance value of 0.73 describes stone, further honing in on the key components of the wall.
Channel 506 with a relevance value of 0.72 describes the wall, integrating these features into the overall structure
identified in the image. In layer 3, channel 985 with a relevance value of 0.87 describes texture, which is important for
recognizing the surface characteristics of the stone wall. Finally, in layer 4, channels 1723 and 1260 with relevance

label: values of 1.0 and 0.81 respectively both describe the wall and stone, confirming the identification of the image as a
stone wall stone wall.

predict: The model's decision path aligns well with the ground truth and the detailed description provided in the caption,
stone wall leading to a correct prediction.

The model outputs a correct result: space shuttle. Specifically, in the shallowest layer 1 of the model, channel 88 with
a relevance value of 1.0 describes the concept of 'smooth’, which aligns with the smooth surfaces typically seen on
space shuttles. In layer 2, channel 103 with a relevance value of 1.0 describes the concept of 'stars', which could
relate to the space context of the shuttle, and channel 166 with a relevance value of 0.74 describes 'wooden', which
might be less relevant here but could be linked to the indoor display setting of the shuttle. In layer 3, channels 985 and
911 with relevance values of 1.0 and 0.76 respectively describe 'display' and 'background’, correctly identifying the
shuttle's display context and its background setting in the image. Channels 525 and 233, both describing 'metal’ and
'metallic’ with relevance values of 0.71 and 0.7, align well with the typical materials used in the construction of a space
shuttle. Finally, in the deepest layer 4, channel 1494 with a relevance value of 1.0 accurately identifies the object as a
A 'shuttle’, and channel 625 with a relevance value of 0.85 describes the color 'white', matching the primary color of the
label: shuttle in the image.

space shuttle The model's decision path and the high relevance values of the key concepts directly related to the features of a
predict: space shuttle, such as its material and context of display, support the correctness of the prediction. Therefore, the
space shuttle model outputs a correct result: space shuttle.

The model outputs a correct result: steel arch bridge. Specifically, in the shallowest layer 1 of the model, channel 88
with a relevance value of 1.0 describes the concept of orange, which corresponds to the orange sky described in the
image caption. In the deeper layer 2 of the model, channel 401 with a relevance value of 1.0 describes the concept of
curved, channel 404 with a relevance value of 0.75 describes the concept of sunset, channel 182 with a relevance
value of 0.72 describes the concept of water, and channel 103 with a relevance value of 0.71 describes the concept of
yellow. These concepts align well with the image description, capturing the curved shape of the bridge, the sunset,
and the water reflection. In layer 3, channel 395 with a relevance value of 1.0 describes the concept of cloud, and
channel 725 with a relevance value of 0.76 further supports the concept of sunset, enhancing the contextual
understanding of the scene. Finally, in layer 4, channels 1120 and 573 both with high relevance values (1.0 and 0.92

- respectively) describe the concept of bridge, directly identifying the main object in the image.
label: The structured and high relevance of these concepts at each layer demonstrates a clear and accurate recognition

steel arch bridge path from general scene attributes to the specific identification of the steel arch bridge, confirming the correctness of
predict: the model's prediction.

steel arch bridge

The model outputs an incorrect result pencil box instead of the correct label gar. Specifically, in the shallowest layer 1
of the model, channel 88 with a relevance value of 1.0 describes the concept of orange, which may relate to the
orange lines mentioned in the image caption. In the deeper layer 2, channel 229 with a relevance value of 1.0

& correctly identifies the concept of fish, aligning with the caption that describes a large fish. Moving to layer 3, channels
422 and 31 with relevance values of 1.0 and 0.99 respectively continue to support the identification of the object as a
fish and an animal. However, channel 519 with a relevance value of 0.82 describes the concept of measurement,
likely influenced by the presence of a ruler in the image, which is a common object in a pencil box. In layer 4, channel
1147 with a relevance value of 1.0 describes the concept of black, possibly picking up on the black cap mentioned in
the caption, and channel 626 with a relevance value of 0.74 describes the concept of ruler.

The model seems to have been misled by the presence of objects typically found in a pencil box (ruler, black cap) and
the concept of measurement, leading it to incorrectly predict the image as a pencil box rather than recognizing the
label: gar primary subject as a gar fish. Therefore, the model outputs an incorrect result pencil box.

predict: pencil box




Table S9. Comparisons between local explanations generated by the baseline method and our CoE approach. The highlighted regions
indicate the key concepts identified by different methods as influential in the model’s decision-making process. The local explanations in
the first row are generated by the baseline method using the manually annotated MILAN ANNOTATION dataset, while the second row
represents the outputs of our CoE approach applied to the automatically constructed ACD-B 4,7 dataset.

' The model outputs a correct result hog. Specifically, in the shallowest layer 1 of the
. model, channel 88 with a relevance value of 1.0 describes the concept of a bear
running across sand and a dog going through the pasture with flowers, which might
not directly relate to the image of piglets but could be triggered due to the
&= presence of animals in motion or in a pastoral setting. In the deeper layer 2 of the

. model, channel 46 with a relevance value of 0.82 describes the concept of animals,
P which directly correlates to the image content of piglets. Furthermore, in layer 4 of
the model, channel 475 with a relevance value of 0.75 describes the concept of
pictures of animals, which strongly supports the correct identification of the image
as containing animals, specifically hog. The decision path and relevance values
:j\') label: hog indicate that the model has effectively recognized the primary subject (animals) in
K:, predict: hog the image, leading to the correct prediction of hog, aligning with the ground truth
’ label and the image caption describing piglets.

MILAN
ANNO.
(Baseline)

%% The model outputs a correct result: hog. Specifically, in the shallowest layer 1 of the
model, channel 88 with a relevance value of 1.0 describes the concept of 'smooth’,
which may relate to the texture of the piglets in the image. In the deeper layer 2 of
the model, channels 391, 506, 46, 26, and 24 with relevance values of 1.0, 0.88, 0.82,
0.77, and 0.75 respectively, all describe the concept of 'animal’, aligning well with
the presence of piglets in the image. Channel 229 with a relevance value of 0.77
describes the concept of 'grid', which corresponds to the wire fence enclosure
mentioned in the caption. Channel 402 with a relevance value of 0.71 describes
'food', which is consistent with the description of one piglet eating. In layer 3,
channel 985 with a relevance value of 1.0 continues to describe 'grid’, reinforcing the
identification of the enclosure. Channels 591 and 498 with relevance values of 0.96

CoE (Ours)

S —
Y~ | label:  hog 4 ! ! ce v
k ~, and 0.78 describe 'creature' and 'animal' respectively, further confirming the

(2 F e
predict: hog presence of living animals in the image. Finally, in layer 4, channels 726 and 475 with

relevance values of 1.0 and 0.75 describe 'pig', and channel 1884 with a relevance
value of 0.84 describes 'pink', directly correlating with the pink piglets observed.
These concepts are all highly relevant to the image's content as described in the
caption, leading to a correct prediction of 'hog'.
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