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ComRoPE: Scalable and Robust Rotary Position Embedding Parameterized by
Trainable Commuting Angle Matrices

Supplementary Material

A. Theorems and proofs549

A.1. Proof of the main theorem550

To prove our main theorem (i.e., Theorem 1), we first pro-551
pose some lemmas and prove them.552

Lemma 1. Matrices A,B ∈ Rn×n commute if and only if553
eAxeBy = eAx+By for all x, y ∈ R.554

Proof.555

1) Necessity (⇒). By the definition of eA, we have:556

eA+B =

∞∑
n=0

(A+B)n

n!

=

∞∑
n=0

∑n
k=0

(
n
k

)
AkBn−k

n!

=

∞∑
n=0

n∑
k=0

AkBn−k

k!(n− k)!

=

( ∞∑
k=0

Ak

k!

)( ∞∑
m=0

Bm

m!

)
= eAeB.

(13)557

Substituting A,B with Ax,By, we obtain:558

eAx+By = eAxeBy. (14)559

2) Sufficiency (⇐). We have:560

eAteBt =

( ∞∑
n=0

tnAn

n!

)( ∞∑
m=0

tmBm

m!

)

= I+ t(A+B) + t2 · A
2 + 2AB+B2

4
+ o(t2),

(15)

561

and562

e(A+B)t =

∞∑
n=0

((A+B)t)n

n!

= I+ t(A+B) + t2 · (A+B)2

4
+ o(t2).

(16)

563

Let t2f(t) be the difference between the two expressions564

above. Thus, we obtain: 565

f(t) =
eAteBt − e(A+B)t

t2

=
A2 + 2AB+B2

4
− (A+B)2

4
+ o(1)

=
AB−BA

4
+ o(1).

(17) 566

Taking the limit as t→ 0, we have: 567

lim
t→0

f(t) =
AB−BA

4
. (18) 568

Since eAxeBy = eAx+By , we have f(t) = 0, which im- 569
plies AB = BA. 570

■ 571

Lemma 2. Matrices A1,A2, . . . ,Am ∈ Rn×n (m > 1) 572
pairwise commute if and only if: 573

eA1x1eA2x2 · · · eAmxm = eA1x1+A2x2+···+Amxm (19) 574

for all x1, x2, . . . , xm ∈ R. 575

Proof. For m = 2, the theorem holds by Lemma 1. Sup- 576
pose the theorem holds for all 2 ≤ m ≤ k. We prove it for 577
m = k + 1. 578
1) Necessity (⇒). Assuming: 579

eA1x1eA2x2 · · · eAkxk = eA1x1+A2x2+···+Akxk , (20) 580

we split A1x1 +A2x2 + · · ·+Ak+1xk+1 into two parts: 581

A1x1 +A2x2 + · · ·+Ak+1xk+1

= (A1x1 +A2x2 + · · ·+Akxk) + (Ak+1xk+1).
(21) 582

Since A1,A2, . . . ,Ak+1 commute in pairs, A1x1 + 583
A2x2 + · · ·+Akxk and Ak+1xk+1 also commute. Thus: 584

eA1x1+A2x2+···+Ak+1xk+1

= e(A1x1+A2x2+···+Akxk)eAk+1xk+1

= eA1x1eA2x2 · · · eAk+1xk+1 .

(22) 585

2) Sufficiency (⇐). Let xk+1 = 0. Then: 586

eA1x1eA2x2 · · · eAkxk = eA1x1+A2x2+···+Akxk , (23) 587

implying that A1,A2, . . . ,Ak commute in pairs. 588
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Position Encoding
Method

Perturbation
Intensity

Evaluation Resolution
112 128 192 224 256 320 384 448 512

APE 1 48.10 55.25 76.50 93.10 76.70 71.48 74.36 62.23 53.18
0 45.54 55.18 76.48 92.87 75.91 70.70 73.70 60.43 48.79

Vanilla RoPE 1 47.28 54.96 75.69 93.79 77.66 72.53 74.72 65.19 57.34
0 48.12 55.21 76.47 94.12 76.72 71.59 74.47 62.28 53.99

LieRE 1 48.97 56.15 77.33 94.43 78.35 73.20 77.33 65.74 58.23
0 48.75 55.46 78.16 94.24 78.91 72.92 76.86 65.35 56.85

ComRoPE-AP 1 50.14 55.63 77.47 94.37 79.27 73.56 76.66 67.68 59.34
0 48.06 55.63 75.72 94.26 75.75 70.93 74.72 64.91 57.98

ComRoPE-LD 1 49.89 56.60 79.21 94.24 80.27 74.22 78.60 67.46 60.39
0 48.70 56.46 78.30 94.48 79.27 74.58 76.86 66.02 57.68

Table 3. Accuracy of 3D classification on UCF-101. Models are trained at a resolution of 224× 224 and evaluated at varying resolutions.

For any p ∈ {1, 2, . . . , k}, set all xi = 0 except for xp589
and xk+1. This yields:590

eApxpeAk+1xk+1 = eApxp+Ak+1xk+1 , (24)591

which implies Ap and Ak+1 commute. Thus,592
A1,A2, . . . ,Ak+1 commute in pairs.593

■594

Matrices A1,A2, . . . ,Am ∈ Rn×n (m > 1) pairwise595
commute if and only if there exists a function f : Rm →596
Rn×n such that:597

f(x1 + y1, x2 + y2, . . . , xm + ym)

= eA1x1+A2x2+···+AmxmeA1y1+A2y2+···+Amym
(25)598

for all x1, y1, x2, y2, . . . , xm, ym ∈ R.599

Proof. 1) Necessity (⇒). By Lemma 2, we can easily ver-600
ify that the following f satisfies the condition:601

f(x1 + y1, x2 + y2, . . . , xm + ym)

= eA1(x1+y1)+A2(x2+y2)+···+Am(xm+ym).
(26)602

2) Sufficiency (⇐). From Equation 31, let xk be replaced603
with xk + yk and yk with 0. We obtain:604

f(x1 + y1, x2 + y2, . . . , xm + ym)

= eA1(x1+y1)+···+Am(xm+ym)eA1·0+···+Am·0

= eA1(x1+y1)+···+Am(xm+ym).

(27)605

Comparing this with Equation equation 31, we get:606

eA1x1+A2x2+···+AmxmeA1y1+A2y2+···+Amym

= eA1(x1+y1)+···+Am(xm+ym).
(28)607

For any i, j ∈ {1, 2, . . . ,m}, set xk = 0 for all k ̸= i and 608
yk = 0 for all k ̸= j. This leads to: 609

eAixieAjyj = eAixi+Ajyj . (29) 610

By Lemma 1, this implies that Ai and Aj commute. There- 611
fore, matrices A1,A2, . . . ,Am ∈ Rn×n (m > 1) pairwise 612
commute. 613

■ 614

Proof of Theorem 1. Recall that eA is an orthogonal ma- 615
trix if A is skew-symmetric, which implies R(x;A)⊤ = 616
R(x;A)−1 = R(−x;A). Thus, we have: 617

R(x;A)⊤R(y;A)
= e−A1x1−A2x2−···−ANxN eA1y1+A2y2+···+ANyN .

(30) 618

By Lemma 3 and Equation 30, A pairwise commute if and 619
only if there exists a function f : RN → Rd×d such that: 620

f(y1 − x1, y2 − x2, . . . , yN − xN )

= R(x;A)⊤R(y;A).
(31) 621

Therefore, the theorem holds. 622
■ 623

A.2. Explanation of rotation matrix and its expo- 624
nential representation 625

Following the definition in [9], we first demonstrate the def- 626
inition of rotation group and rotation matrix: 627

Definition 7 (Rotation Group and Rotation Matrix). A spe- 628
cial orthogonal group in Rn, denoted SO(n), is the set of 629
all n× n orthogonal matrices with determinant 1, i.e., 630

SO(n) = {R ∈ Rn×n | R⊤R = I,det(R) = 1}. 631
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We use the terms rotation group and special orthogonal632
group interchangeably. Any matrix in the rotation group is633
called a rotation matrix.634

To establish Definition 5, there is a necessary proposition635
to ensure the correctness of the exponential representation636
of a rotation matrix:637

Proposition 4. Any rotation matrix R can be represented638
by exp(A) where A is a skew-symmetric matrix.639

Proposition 4 is a well-known result in Lie theory, as640
detailed in [8]. Specifically, the matrix R in Proposition 4641
belongs to the Lie group SO(n). The associated Lie algebra642
of this group is so(n), within which the skew-symmetric643
matrix A resides.644

B. More experiments645

B.1. 3D classification646

To assess the ability to handle higher dimensions beyond647
2D, we conduct a 3D classification task on UCF-101 [23].648
The details of the model and configuration can be found in649
Appendix C.650

The results shown in Table 3 demonstrate similar results651
in 2D experiments, that ComRoPE performs best when res-652
olution increases beyond the training resolution, displaying653
the resolution robustness of ComRoPE.654

B.2. Fine-tune on pre-trained model655

Recall that we represent the RoPE function parameterized656
by angle matrices as defined in Equation 3. If all elements in657
A = {Ai}Ni=1 are initialized as zero matrices (i.e., ∀i,Ai =658
O), the behavior of this RoPE function degenerates into a659
standard attention mechanism. This is because, in this case,660
R(x;A) = exp(O) = I for any input x.661

On the other hand, if A = {Ai}Ni=1 is initialized as de-662
scribed in Appendix D, the RoPE function reduces to the663
vanilla RoPE formulation.664

These observations demonstrate that our method can665
represent both the standard attention mechanism and var-666
ious common RoPE attention variants. Therefore, during667
fine-tuning, standard attention or vanilla RoPE can be re-668
placed with our method. Pre-trained weights can be loaded669
and fine-tuned under this new paradigm seamlessly, even if670
ComRoPE was not applied during the pre-training phase.671

As an example, we fine-tune the Vision Transformer672
pre-trained in CLIP [19] on ImageNet by simply replacing673
the standard attention mechanism with each RoPE method.674
Specifically, we fine-tune the model for 4 epochs using a675
batch size of 3456 and a learning rate of 3× 10−4.676

The results, presented in Table 4, show that ComRoPE-677
LD achieves the best performance. An interesting observa-678
tion is that vanilla RoPE exhibits the lowest accuracy among679

all five methods. This is likely because its fixed and man- 680
ually defined parameters cannot be loaded seamlessly. In 681
other words, it must adapt the pre-trained latent space dur- 682
ing fine-tuning to effectively complete the task, which may 683
result in suboptimal performance. 684

Method Accuracy

APE 79.91
Vanilla RoPE 79.82

LieRE 80.12
ComRoPE-AP (ours) 80.11
ComRoPE-LD (ours) 80.17

Table 4. Accuracy of fine-tuned models with different positional
encoding methods on ImageNet.

C. Details of configuration 685

C.1. Configuration of 2D classification 686

Configuration of 2D classfication task is shown in Table 5. 687

Key Value

Layers 12
Image Size 224
Patch Size 16

Hidden Dimension 768
Attention Heads 12

Batch Size 6144
Optimizer AdamW

Weight Decay 0.01
Learning Rate 10−3

LR Scheduler cosine
Warmup Ratio 0.02

Epochs 200

Table 5. Model and training configuration of 2D classification ex-
periments.

C.2. Configuration of 3D classification 688

Because the vanilla RoPE and ComRoPE-AP require that 689
the head dimension be a multiple coordinate dimension, 690
standard ViT-Base is not applicable. We modified the model 691
parameters to make it possible to conduct experiments on all 692
of the five positional encoding methods. Besides, because 693
the data size of UCF-101 is not too large, using a smaller 694
model is more appropriate. All the details are shown in Ta- 695
ble 6. 696
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Key Value

Layers 8
Image Size 224

Frame Count 8
Patch Size 16

Hidden Dimension 384
Attention Heads 8

Batch Size 768
Optimizer AdamW

Weight Decay 0.01
Learning Rate 1.2× 10−4

LR Scheduler cosine
Warmup Ratio 0.02

Epochs 80

Table 6. Model and training configuration of 3D classification ex-
periments.

D. Reformulation of baseline RoPE methods in697

detail698

D.1. Vanilla RoPE699

Firstly, note that we can represent a 2D rotation matrix in700
the exponential form:701 (

cos(α) −sin(α)
sin(α) cos(α)

)
= exp(

(
0 −α
α 0

)
) (32)702

The solution proposed by RoFormer, which we call vanilla703
RoPE here, can be regarded as a special type of ComRoPE-704
AP with block size 2 and non-trainable Pj in Equation 8705
where:706

Pj =

(
cos(mθ

2N
d ·j) −sin(mθ

2N
d ·j)

sin(mθ
2N
d ·j) cos(mθ

2N
d ·j)

)

= exp(mθ
2N
d ·j

(
0 −1
1 0

)
)

(33)707

In practice, RoFormer adopts θ = 10000−1 as the hyper-708
parameter of the rotation base.709

D.2. LieRE710

For LieRE, the blocks are independent and trainable.711
Hence, we directly define Bij in Equation 6 as:712

Bij = Pij −P⊤
ij , (34)713

where Pij is a trainable matrix.714

E. Analysis and comparison of complexity and715

extra consumption716

Table 7 presents an overview of the properties of the po-717
sitional encoding methods evaluated in this work. Specifi-718

cally, the table highlights their commutativity (i.e., the com- 719
mutativity of angle matrices when represented in the RoPE 720
form parameterized by angle matrices), the number of addi- 721
tional parameters, and the extra time complexity introduced 722
by the positional encoding module. 723

E.1. APE 724

For a Transformer that takes n embeddings with d features 725
as inputs, the extra parameters of position encoding are the 726
tensors in the position code book, i.e., n × d. The extra 727
computation is to add position embeddings onto the original 728
features. Therefore, the extra time complexity is O(n× d). 729

E.2. RoPE parameterized by angle matrices 730

We unify RoPE with angle matrices whose rotation process 731
is presented in Algorithm 1, where n, h, d, b,N represents 732
sequence length, number of heads, dimension of hidden 733
states, block size, and number of axes respectively. In this 734
part, we focus on extra parameters and time complexity on 735
each layer. 736

Algorithm 1 Rotation of query and key matrices

In 1: query matrix Q with shape (n, h, d
h )

In 2: key matrix K with shape (n, h, d
h )

In 3: angle base matrix A with shape (N,h, d
hb , b, b)

In 4: patch positions P with shape (n,N)

Out: rotated query and key matrices Q̂, K̂

for axis = 1 to N do
Maxis ← Aaxis ⊙Paxis

end for
M←

∑
Maxis where M has a shape of (n, h, d

hb , b, b)

R← diag(eM, dim = 2) with shape (n, h, d
h ,

d
h )

Q̂← RQ, K̂← RK

return Q̂, K̂

Angle base matrix A is defined by the RoPE method, 737
and the extra parameters are brought by the definition of A. 738
Time complexity of 1) calculating the element-wise product 739
over each axis is O(n×h× d

hb×b
2) = O(ndb); 2) calculat- 740

ing sum of M is O(N×n×h× d
hb×b

2) = O(ndbN); 3) cal- 741

culating matrix exponential is O(n×h× d
hb×b

3 = O(ndb2) 742

based on [1]; 4) applying rotation is O(n × h × ( dh )
2) = 743

O(nd
2

h ). Thus, the overall time complexity of rotation is 744

O(ndbN + ndb2 + nd2

h ). 745

E.2.1 Vanilla RoPE 746

No extra parameters are presented in vanilla RoPE, and 747
the angle base matrix A can be calculated during pre- 748
processing. Besides, in vanilla RoPE, block size b = 2, 749
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Positional Encoding Method Commutativity Extra Parameters Extra Time Complexity

APE – nd O(nd)

Vanilla RoPE Yes 0 O(Lnd(bN + b2 + d
h )) ≈ O(Lnd2

h )
LieRE Commonly Not LNdb O(Lnd(bN + b2 + d

h ))
ComRoPE-AP (ours) Yes Ldb O(Lnd(bN + b2 + d

h ))
ComRoPE-LD (ours) Yes Ld( b

N + N
b ) O(Lnd(bN + b2 + d

h ))

Table 7. Comparison of different types of positional encoding methods. n represents for count of patches (tokens), d represents for
dimension of hidden states, L represents for count of layers, b represents for block size, N represents for count of axes, and h represents
the count of attention heads.

so d
h ≫ bN + b2 = 2N + 4 in most cases. Thus,750

count of extra parameters are 0 and extra time complexity751

is O(ndbN + ndb2 + nd2

h ) ≈ O(nd
2

h ) where b = 2.752

E.2.2 LieRE753

For LieRE, the angle base matrix can be formulated as A =754
P−P⊤ where the parameters in P are all independent. The755
only extra step to get A from P is the subtraction whose756
time complexity is O(Ndb). Thus, count of extra parame-757
ters are N ×h× d

hb × b2 = Ndb and extra time complexity758

is O(ndbN+ndb2+ nd2

h +ndb) = O(ndbN+ndb2+ nd2

h ).759

E.2.3 ComRoPE-AP760

For ComRoPE-AP, we compose the angle base matrix A761
whose shape is (N,h, d

hb , b, b) with matrices with shape762

(N,h, d
hbN , b, b) by filling the blocks that are irrelevant to763

the corresponding coordinate axes with zeros. Thus, simi-764
larly, count of extra parameters are N ×h× d

hbN × b2 = db765

and extra time complexity is O(ndbN + ndb2 + nd2

h ).766

E.2.4 ComRoPE-LD767

ForComRoPE-LD, the angle base matrices in A are pair-768
wise linearly dependent on the first dimension (i.e., axis di-769
mension). Therefore, it can be presented by a matrix with770
shape (h, d

hb , b, b) and a multiplication factor with shape771

(N,h, d
hb ) by a multiplication step with time complexity772

O(N × h × d
hb × b2) = O(Ndb). Thus, count of extra773

parameters are h× d
hbN × b2 +N × h× d

hb = d( b
N + N

b ),774

and extra time complexity is O(ndbN + ndb2 + nd2

h ).775

F. Distribution of elements in angle matrices776

In this section, we analyze the element distribution in angle777
matrices obtained from the 2D classification experiments.778
Specifically, we extract all elements from the upper triangu-779
lar parts of the matrices. The standard deviations of these780
elements are summarized in Table 8, and their density plot781
is presented in Figure 8.782

Method
Block
Size

Standard
Deviations

LieRE
2

0.326
ComRoPE-AP 0.271
ComRoPE-LD 0.384

LieRE
4

0.246
ComRoPE-AP 0.208
ComRoPE-LD 0.278

LieRE
8

0.195
ComRoPE-AP 0.171
ComRoPE-LD 0.238

Table 8. The standard deviations of elements in angle matrices
obtained from the 2D classification experiments.

To provide a clearer view of the long-tail distribution, 783
we present the density plot using both linear and logarith- 784
mic scales in Figure 8. From the linear scale plot, it can be 785
observed that elements near zero exhibit the highest vari- 786
ance in the angle matrices of LieRE, while ComRoPE-AP 787
demonstrates the most moderate variance. On the other 788
hand, the logarithmic scale reveals notable differences in 789
range. For instance, ComRoPE-LD retains a broader dis- 790
tribution at values farther from zero. Consequently, as in- 791
dicated in Table 8, ComRoPE-LD exhibits the largest over- 792
all variance among the angle matrix elements. This phe- 793
nomenon is likely due to the linear dependencies between 794
angle matrices across different coordinate axes, which ne- 795
cessitate significant frequency differences to distinguish 796
them effectively. 797
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