
Dyn-HaMR: Recovering 4D Interacting Hand Motion from a Dynamic Camera

Supplementary Material

The following sections supplement our main paper in
terms of implementation details and additional qualitative
and quantitative evaluations. Moreover, we refer the reader
to our supplementary videos on the project webpage to
better perceive the resulting motions and for a more com-
prehensive exposition, where we show promising results
on in-the-wild hand reconstruction and qualitative compar-
isons against the state-of-the-art interacting hand recon-
struction methods [13] under the challenging dynamic cam-
era scenarios.

1. Implementation Details and Data Pre-
Processing

We now provide more details into our initialization before
moving onto the optimization scheme.

1.1. Initializing Motion States in Camera Frame

To initialize 2D observations in image plane and the MANO
parameters cqh

t = {θh
t ,β

h
t ,

c ϕh
t ,

c τh
t } in the camera coor-

dinate system at timestep t, we adopt a hierarchical pipeline.
First, we employ a 2D hand pose estimation model, ViT-

Pose, following [13, 18], known for its performance in hand
detection and palm localization. Despite its strength in de-
tecting global hand regions, the model often produces jit-
tery and inaccurate joint positions, making it insufficient
for subsequent optimization processes. As a remedy, we
refine the 2D inputs by cropping the image based on bound-
ing boxes calculated from ViTPose’s 2D keypoint predic-
tions. Specifically, for a set of keypoints vitĴh

t , the bound-
ing box is calculated by the point sets with a confidence
filter ϵb = 0.5 and an extension coefficient of 200%. To
initialize the MANO parameters {θh

t ,β
h
t ,

c ϕh
t }, we run the

state-of-the-art hand reconstruction method of [13], using
the officially released checkpoints, on the image patches re-
stricted to the calculated bounding box. To estimate trans-
lation cτh

t = (x, y, d) of the two hands in 3D space, where
d is the direction along depth, we simulate various versions
of cτh

t in the camera coordinate system based on the pre-
dicted weak-perspective camera parameters (s, tx, ty), as-
suming a fixed focal length f = 1000 following [13] using
x = tx, y = ty, d = 2f

s×sI
, where sI is the image size. Al-

ternatively, the camera translation in the camera coordinate
system can also be acquired by solving the PnP algorithm
(i.e. RANSAC [3]) with the 3D keypoints cJh

t and their cor-
responding 2D projections Ĵh

t on the image plane. Finally,
we infill the missed frames if the interval is less than 50
frames using the approach described in Sec. 3.1.
Keypoint refinement. Building upon the complete 3D ini-

tialization, we refine the corresponding 2D observations to
improve accuracy and consistency. Specifically, we first de-
tect all hands in the scene using ViTPose [18], and then
combine these detections with predictions from MediaPipe
[10] and the 2D re-projections derived from the 3D initial-
ization. To achieve this, we extract wrist positions from
ViTPose and pair them with finger joint predictions from
MediaPipe, ensuring that both hands in each pair are cor-
rectly matched to the same individual. We replace the
2D finger joints whose confidence scores are lower than
the threshold ϵj = 0.5 with the corresponding 2D re-
projections from the 3D initialization.

Handling occlusions. Modelling accurate interactions be-
tween hands is particularly challenging due to frequent oc-
clusions, rapid motions, and truncations. These factors of-
ten lead to missed detections, especially in complex inter-
action scenarios. To address this, we employ a generative
motion infilling approach, as detailed in Sec. 3.1. Specifi-
cally, we infill the hands from the timestep where it first ap-
pears to the last appearance timestep (tstart, tend) with our
generative motion prior. To handle the missed detections
and occlusion more robustly, we only optimize the visible
individual hands and mask out the objective terms for the
occluded frames (i.e. we only update the latent code z with
these observed timesteps in Stage III), utilizing the motion
prior as a guide to reason and infill the occluded frames.

Handling hallucinations. HaMeR can yield erroneous hal-
lucinations – such as multiple hands in the same location,
incorrect handedness, or implausible poses. Specifically,
HaMeR’s detector can produce overlapping bounding boxes
(bboxes) without suppression, leading to redundant or in-
consistent predictions as both ViTPose and HaMeR process
each bbox independently. As a remedy, we use ViTPose
to extract 2D keypoints with confidences (IoU > 0.9) and
instead of processing all overlapping detections, we retain
only the bbox with the highest confidence before feeding
it into HaMeR. We also filter any detection that appears in
<10 frames, reducing false positives. Incorrect handedness,
where one hand is occasionally confused as its opposite, can
be identified by the sudden change in the bbox (IoU with the
previous bbox <0.1), allowing us to mark these frames as
invalid prior to generative infilling.

1.2. Optimization Scheme

Multi-stage optimization. Our key insight is to optimize
the interacting hands in stages, balancing the per-frame
motion accuracy and temporal smoothness while avoiding
over-smoothing We first optimize the two hands during



Table 1. Acceleration analysis on HOT3D dataset. Acc Err is
reported w/o the div. of ω2 (left) in mm/s2 and with the div. of
ω2 in m/s2 (right). Lower (↓) is always better.

Method Acc Err (w/o) ↓ Acc Err (with) ↓
ACR [20] 16.45 14.82
IntagHand [8] 15.12 13.62
HaMeR [21] 13.78 12.41
HaMeR + DPVO [17] 12.78 11.51
Ours (Dyn-HaMR) 4.95 4.46

Stage II individually with a lower λsmooth = 1 to ensure
accurate local pose and pixel alignment. After obtaining
plausible global motion, we start to jointly optimize two
hands in a single batch with interacting hand motion prior
module, which makes the scale information shared between
the two hands and further constrains the hands-camera dis-
placement plausible. During optimization, the dimension of
the latent code z is 128 in the hand motion prior module. In-
terpenetration is only applied when both hands are present
in the scene.
Chunk optimization. (i) For the pre-processing of long
sequence V = {I1, · · · , IT } with T ≥ 128 frames, we seg-
ment each video into chunks of 128 frames. This ensures
compatibility with the hand motion prior module, which
adopts a sequence length of 128 for motion parameteriza-
tion as per [2]. Subsequently, we optimize the motion seg-
ments in chunks. We initialize the next motion and cam-
era state with the end state of the last chunk (e.g. initial-
ize C127 and qh

128 with the optimized output of qh
127 and

C128), as well as the world scale factor ω. (ii) In terms of
the post-processing for evaluation, we align the translation
parameters across segments and combine them to generate
seamless visualizations of the reconstructed motion.

2. Evaluation Metrics
To compute G-MPJPE and GA-MPJPE, we first align
the first two frames (G-MPJPE) or the whole sequence
(GA-MPJPE) of hand motion with the GT using Umeyama
method. We then transform the prediction to align with the
GT before computing the MPJPE as the mean L2 distance
between each predicted and GT joint. To compute the Acc
Err, we followed the common practice in HMP, GLAMR
and SLAHMR ignoring the division, αt

i = vt−1
i − 2vti +

vt+1
i , where αt

i, v
t−1
i are the acc. and velocity at timestep

t without the division of discretized time step. We further
analyze the effect of the different computation of acceler-
ation where the discretized time step is applied or not. We
report both Acc Err with and w/o division (mm2 and m/s2)
in Tab. 1, where we can observe that our method keeps con-
sistently better results under different computation method.

For the RTE (%) of sequence with N frames, we
compute it the as the Trajectory Error as in Sec. 3:

1
N

∑N
i=1 ∥Ti

target − (R ·Ti
pred + t)∥2/∆, where ∆ =∑N−1

i=1 ∥Ti+1
target −Ti

target∥2, with (R, t) being the computed
rigid transform and T the root translation.

3. Additional Experiments
In this section, we provide experiments for our 4D global
hand motion reconstructions from both in-the-wild videos
and existing benchmarks (i.e. H2O [6], FPHA [4], HOI4D
[9], EgoDexter [12]).
Evaluation metrics. We evaluate both the reconstruction
quality and the plausibility of our motion. In addition to
the evaluation metrics of (i) local hand pose and shape, (ii)
global hand motion, we further conduct (iii) motion plau-
sibility evaluation quantifying the plausibility and fidelity
of our bimanual reconstructions. In addition to the metrics
introduced in our main paper such as MPJPE (mm), PA-
MPJPE (mm) and Acc Err (mm/s2), we further propose
the following two fronts for evaluation:
• Global trajectory plausibility: We quantify Trajectory

Error (Trans Err) in % for each clip after the rigid align-
ment and normalize it by displacements of ground truth
trajectory.

• Bimanual (interacting hand) pose plausibility: We re-
port Fréchet Distance (FID) between estimations and the
GT data to quantify the plausibility of the joint pose of
interacting hands. To evaluate the smoothness and the in-
teraction quality, we compute Jerk (10m/s3) in the world
coordinate system and Mean Inter-penetration Volume
(Pen) in cm3 to measure between the two hands.

Specifically, we adopt a PointNet++ [14] based embed-
ding network for Fréchet distance on latent space follow-
ing [7, 16]. For single-hand plausibility, we train it on the
combined dataset of InterHand2.6M and H2O to regress the
local hand poses θ ∈ R3×15 in axis-angle representation
from the hand mesh vertices V ∈ R3×778. We keep the
original setting while only modifying the last layer. The
reconstruction MPVPE achieves 1.18mm. For interacting
hands, we modify the last layer to regress the hand pose for
both hands as well as the relative root translation and rota-
tion. This achieves 1.65mm and 1.61mm MPVEP for the
left and right hands, respectively. We report the FID score
for both the single hand version and the bimanual version,
whenever two hands are jointly visible.

3.1. Results

Local motion estimation. To fully analyze the effective-
ness of our pipeline, we conduct experiments on FPHA [4],
an egocentric RGB-D hand-object motion dataset, which
contains 105K frames encompassing 45 daily hand action
categories, captured across diverse hand configurations with
ground truth 3D hand joint annotations provided in the cam-
era coordinate system. We evaluate the quality of biman-



Figure 1. Comparison of global trajectory on HOI4D [9].
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Figure 2. Qualitative comparison with state-of-the-art method HaMeR [21] on in-the-wild online videos.

ual hand reconstruction by measuring the root-relative joint
reconstruction error (local motion) using metrics such as
MPJPE, PA-MPJPE, and Acc Err. As shown in Tab. 2, our
method demonstrates superior performance, achieving the
lowest MPJPE (18.9 mm) and PA-MPJPE (12.5 mm) com-
pared to other state-of-the-art approaches. Additionally, we
achieve a competitive Acc Err of 5.7, demonstrating im-
proved temporal smoothness and consistency. Furthermore,
qualitative results in Fig. 3 further illustrate the robustness
of our pipeline in handling complex in-the-wild scenarios
such as egocentric hand-object interactions and hand-hand
interactions.

Global motion estimation. As introduced in Sec. 4.1
of the main paper, H2O [6] and HOI4D [9] contain dy-
namic camera videos with available camera poses to convert
the hand poses from the camera coordinate system to the
world coordinate system. To evaluate global motion recov-
ery performance, we have conducted qualitative evaluations
on the aforementioned four egocentric hand-object interac-
tion datasets mentioned in Sec. 4.1 as well as on in-the-wild
videos. In this section, we first present qualitative results on

these datasets shown in Figs. 5, 7 and 8, where our method
produces plausible 4D global motion with trajectories in
the world coordinate system, while previous state-of-the-art
methods fail to capture the global motion in 3D space, es-
pecially from dynamic cameras. Furthermore, our method
yields more plausible depth reasoning in the bimanual set-
ting and significantly reduces the jitter in translations. To
quantify the reconstruction accuracy and errors, we evaluate
the Translation Error and Jerk in Tab. 3, where we can ob-
serve significant improvements over the state-of-the-art ap-
proaches. Specifically, we evaluate the RTE score for each
of the motion trajectories in the world coordinate system. It
can be observed that our method consistently archives the
lowest translation error across datasets. We also conduct
further analysis on the HOI4D dataset as shown in Fig. 1,
which contains large camera displacements. Notably, we
achieve 3.89% in Trans Err against 18.98% of HaMeR [13]
on this dataset. We encourage to browse the reconstruction
results in our supplementary videos, which clearly demon-
strates the superiority of our pipeline against the state-of-
the-art methods.
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Figure 3. Qualitative results of hand motion estimation under complex hand interactions and hand-object interaction. In the figure,
(a)-(b) show the samples from InterHand2.6M dataset [11], while (f)-(i) are from H2O [6], FPHA [4], HOI4D [9] and EgoDexter [12],
respectively. Finally, (e) and (j) are reconstruction results from in-the-wild web videos.

Table 2. Quantitative comparison on FPHA [4] dataset. PA-
MPJPE represents the MPJPE after Procrustes Alignment.

Method MPJPE ↓ PA-MPJPE ↓ Acc Err ↓
ACR [20] 43.6 35.1 13.1
IntagHand [8] 41.2 31.6 12.4
HaMeR [13] 29.9 18.7 12.5
w/o bio. const. 19.6 13.5 6.1
w/o pen. const. 21.3 15.7 5.4
Ours (Dyn-HaMR) 18.9 12.5 5.7

Bimanual hand pose plausibility. In addition to evaluating
global motion recovery, we conduct extensive experiments
on complex interacting hand scenarios and assess the plau-
sibility of the results. Fig. 4 indicates significantly more
details in reconstruction in favor of our method, more sta-
ble depth reasoning, and higher local hand pose accuracy
under self-occlusions compared to the baseline [13]. We
further provide a plausibility evaluation of the 4D motion
reconstructions in Tab. 3, where our approach is compared
against state-of-the-art methods [8, 13, 20] and ablations of
different modules. Our method consistently outperforms
existing approaches by a large margin across all reported
metrics. Thanks to the integration of penetration and biome-

chanical constraints, our approach exhibits superior stabil-
ity in recovering bimanual poses from complex interacting
scenarios, achieving the lowest FID and Jerk. This demon-
strates the effectiveness of our Stage III in addressing the
challenges of bimanual interactions.

3.2. Analysis

Ablation study of initialization. While our network is not
restricted to any specific initialization backbone we provide
an additional ablation study on the 3D motion state initial-
ization to fully assess the effect of each component, where
we conduct experiments on ACR [20], IntagHand [8] and
HaMeR [13]. As illustrated in Tab. 4, we compare our
full pipeline (HaMeR [13] initialization) with initializations
from [8, 20] and Ours (Base) represents to initialize from
the default MANO mean pose. It can be observed that there
is a boost in the performance with the recent large-scale
model based hand reconstruction framework HaMeR [13],
which indicates that a better initialization could further im-
prove the optimization and speed up the convergence.

Runtime. Our network is agnostic to the initialization
method (e.g. camera, hand initialization), which affects the
processing time. As shown in Tab. 5. On an NVIDIA A100
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Figure 4. Comparison with state-of-the-art hand reconstruction approach (static camera) on InterHand2.6M dataset [11]. We
compare our method with state-of-the-art hand reconstruction approach HaMeR [21] under challenging hand interactions.

Table 3. Plausibility evaluation on multiple datasets. Results are reported on the H2O [6] and InterHand2.6M [11] to analyze the jitter,
penetration, translation, and plausibility. FID is reported for both single hand (left) and two hands (right).

Method H2O InterHand2.6M
Jerk ↓ Pen ↓ Trans Err ↓ FID ↓ Jerk ↓ Pen ↓ Trans Err ↓ FID ↓

ACR [20] 149.43 0.07 10.89 1.95 / 4.45 153.62 5.05 8.65 2.51 / 5.36
IntagHand [8] 166.38 0.06 11.15 2.14 / 4.12 165.31 4.82 9.19 2.69 / 5.07
HaMeR [21] 195.77 0.06 10.43 1.76 / 4.78 183.45 5.17 8.43 2.45 / 5.45
Ours (w/o bio. const.) 2.65 0.04 4.71 1.89 / 2.78 4.57 2.67 4.41 1.89 / 4.12
Ours (w/o pen. const.) 2.36 0.02 4.13 1.38 / 2.12 4.03 4.23 4.93 1.53 / 4.64
Ours (w/o III) 2.98 0.02 4.21 2.01 / 2.93 4.81 4.49 4.96 2.89 / 4.87
Ours (Dyn-HaMR) 2.34 0.009 5.67 1.34 / 1.98 4.26 2.46 4.35 1.49 / 3.56

Table 4. Ablation study on H2O [6] dataset. To quantify the
importance of the initialization, we compare the performance ini-
tialized from different state-of-the-art approaches [8, 13, 20].

Method G-MPJPE ↓ GA-MPJPE ↓ MPJPE ↓ Acc Err ↓
Ours (Base) 55.8 47.6 28.9 4.2
Ours (ACR [20]) 49.8 37.3 23.2 4.7
Ours (IntagHand [8]) 48.9 41.4 25.1 4.5
Ours (HaMeR [21]) 45.6 34.2 22.5 4.2
Ours (Long) 69.5 49.1 22.3 4.2

GPU, our experiments for a 128-frame video clip adopt
HaMeR and ACR for 3D initialization, taking 3.18 min-
utes, and 8 seconds on average, respectively. Subsequently,
optimizing stage II takes around 2.3 minutes. Finally, the

last stage takes 1 to 2 minutes. We use Pyrender for off-
screen rendering, which takes an additional minute. Note,
the rendering time can also vary depending on the specific
resolution and number of views desired. Compared to ex-
isting optimization-based pipelines such as humor [15] and
slahmr [19], which take more than 45 minutes to 2 hours for
128 frames on A100 GPU, our method achieves the fastest
test time optimization, which makes a step towards efficient
and real-time applications.

Long sequences degeneration. As described in Sec. 1 and
3, the errors in estimated global trajectories would accu-
mulate over time in our moving camera setting. Therefore,
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Figure 5. In-the-wild 4D global hand motion reconstructions
on HOI4D dataset [9]. We visualize the front view and the bird’s
eye view, which are the upper row and the lower row in each of
the sample motions. State-of-the-art hand reconstruction approach
HaMeR [13] fails to recover plausible global trajectories while our
method produces. Moreover, our method produces significantly
less jitter and more plausible depth reasoning. Please see the sup-
plementary video for better visualization of motions.

we follow standard evaluations for open-loop reconstruc-
tion (e.g., SLAM and inertial odometry) to compute errors
using a sliding window, similar to WAHM and GLAMR.
To quantify its impact, we provide the results for long se-
quence here in Tab. 4, where we conduct the evaluation
based on the original video sequence length instead of the
128 clips mentioned in the experiments section.

Input Ours HaMeR + SLAM (DPVO)

Figure 6. In-the-wild 4D global hand motion reconstructions on
HOT3D [1] (top and bottom rows) and Ego-Exo4D [5] (middle
row) datasets.

Table 5. Runtime. We show the individual runtime for initializa-
tion and each optimization stage separately.

Methods Avg. runtime (min.)
HuMoR [15] 58.7
SLAHMR [19] 65.5
Camera tracking (DPVO [17]) 1.49
3D Hand tracking (HaMeR [21]) 3.18
3D Hand tracking (ACR [20]) 0.13
2D keypoints detection [10, 18] 1.45
Stage II optimization 2.5
Stage III optimization 1.69
Dyn-HaMR (initialization) 3.07∼6.12
Dyn-HaMR (optimization) 4.19



Ours HaMeRInput video

Figure 7. In-the-wild 4D global hand motion reconstructions on EgoDexter dataset [12]. Please see the supplementary video for the
motion visualization. Our method produces pausible global motion and depth reasoning.
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Figure 8. In-the-wild 4D global hand motion reconstructions on FPHA dataset [4]. We also provide detailed motion visualization of
FPHA in the supplementary video.



References
[1] P. Banerjee, S. Shkodrani, P. Moulon, S. Hampali, S. Han, F.

Zhang, L. Zhang, J. Fountain, E. Miller, S. Basol, R. New-
combe, R. Wang, J. Engel, and T. Hodan. Hot3d: Hand
and object tracking in 3d from egocentric multi-view videos.
arXiv preprint arXiv:2411.19167, 2024. 6

[2] Enes Duran, Muhammed Kocabas, Vasileios Choutas, Zi-
cong Fan, and Michael J. Black. Hmp: Hand motion priors
for pose and shape estimation from video. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Com-
puter Vision (WACV), 2024. 2

[3] Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 24(6):381–395, 1981. 1

[4] Guillermo Garcia-Hernando, Shanxin Yuan, Seungryul
Baek, and Tae-Kyun Kim. First-person hand action bench-
mark with rgb-d videos and 3d hand pose annotations. In
Proceedings of Computer Vision and Pattern Recognition
(CVPR), 2018. 2, 4, 8

[5] K. Grauman, A. Westbury, L. Torresani, K. Kitani, J. Malik,
T. Afouras, K. Ashutosh, V. Baiyya, S. Bansal, B. Boote,
et al. Ego-exo4d: Understanding skilled human activity
from first-and third-person perspectives. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19383–19400, 2024. 6

[6] Taein Kwon, Bugra Tekin, Jan Stühmer, Federica Bogo,
and Marc Pollefeys. H2o: Two hands manipulating objects
for first person interaction recognition. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 10138–10148, 2021. 2, 3, 4, 5

[7] Jihyun Lee, Shunsuke Saito, Giljoo Nam, Minhyuk Sung,
and Tae-Kyun Kim. Interhandgen: Two-hand interaction
generation via cascaded reverse diffusion. In CVPR, 2024.
2

[8] Mengcheng Li, Liang An, Hongwen Zhang, Lianpeng Wu,
Feng Chen, Tao Yu, and Yebin Liu. Interacting atten-
tion graph for single image two-hand reconstruction. In
IEEE/CVF Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2022. 2, 4, 5

[9] Yunze Liu, Yun Liu, Che Jiang, Kangbo Lyu, Weikang Wan,
Hao Shen, Boqiang Liang, Zhoujie Fu, He Wang, and Li Yi.
Hoi4d: A 4d egocentric dataset for category-level human-
object interaction. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 21013–21022, 2022. 2, 3, 4, 6

[10] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris Mc-
Clanahan, Esha Uboweja, Michael Hays, Fan Zhang, Chuo-
Ling Chang, Ming Guang Yong, Juhyun Lee, et al. Medi-
apipe: A framework for building perception pipelines. arXiv
preprint arXiv:1906.08172, 2019. 1, 6

[11] Gyeongsik Moon, Shoou-I Yu, He Wen, Takaaki Shiratori,
and Kyoung Mu Lee. Interhand2.6m: A dataset and baseline
for 3d interacting hand pose estimation from a single rgb im-
age. In European Conference on Computer Vision (ECCV),
2020. 4, 5

[12] Franziska Mueller, Dushyant Mehta, Oleksandr Sotny-
chenko, Srinath Sridhar, Dan Casas, and Christian Theobalt.
Real-time hand tracking under occlusion from an egocentric
rgb-d sensor. In Proceedings of International Conference on
Computer Vision (ICCV), 2017. 2, 4, 7

[13] Georgios Pavlakos, Dandan Shan, Ilija Radosavovic, Angjoo
Kanazawa, David Fouhey, and Jitendra Malik. Recon-
structing hands in 3d with transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9826–9836, 2024. 1, 3, 4, 5, 6

[14] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information
processing systems, 30, 2017. 2

[15] Davis Rempe, Tolga Birdal, Aaron Hertzmann, Jimei Yang,
Srinath Sridhar, and Leonidas J. Guibas. Humor: 3d human
motion model for robust pose estimation. In International
Conference on Computer Vision (ICCV), 2021. 5, 6

[16] Dong Wook Shu, Sung Woo Park, and Junseok Kwon.
3d point cloud generative adversarial network based on
tree structured graph convolutions. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 3859–3868, 2019. 2

[17] Zachary Teed, Lahav Lipson, and Jia Deng. Deep patch vi-
sual odometry. Advances in Neural Information Processing
Systems, 36, 2024. 2, 6

[18] Yufei Xu, Jing Zhang, Qiming Zhang, and Dacheng Tao. Vit-
pose: Simple vision transformer baselines for human pose
estimation. Advances in Neural Information Processing Sys-
tems, 35:38571–38584, 2022. 1, 6

[19] Vickie Ye, Georgios Pavlakos, Jitendra Malik, and Angjoo
Kanazawa. Decoupling human and camera motion from
videos in the wild. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2023. 5, 6

[20] Zhengdi Yu, Shaoli Huang, Fang Chen, Toby P. Breckon,
and Jue Wang. Acr: Attention collaboration-based regres-
sor for arbitrary two-hand reconstruction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023. 2, 4, 5, 6

[21] Binghui Zuo, Zimeng Zhao, Wenqian Sun, Wei Xie, Zhou
Xue, and Yangang Wang. Reconstructing interacting hands
with interaction prior from monocular images. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 9054–9064, 2023. 2, 3, 5, 6


	. Implementation Details and Data Pre-Processing
	. Initializing Motion States in Camera Frame
	. Optimization Scheme

	. Evaluation Metrics
	. Additional Experiments
	. Results
	. Analysis


