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A. Location Optimization Loss Functions
We design three specific loss functions to guide the opti-
mization process. These functions focus on per-frame po-
sitional distance, directional alignment, and overall trajec-
tory shape similarity respectively. In this section, we will
provide a detailed explanation of each of these three loss
functions.

A.1. Pose Loss

The pose loss Lpose quantifies the spatial difference be-
tween the detected perturbations P det

t and the target pertur-
bations P tar

t . It is calculated using the following formula:

Lpose =
1
n

∑t
i=t−n+1

∥∥pdeti − ptari

∥∥2
Dmax

, (1)

Where Dmax = max
(∥∥pdeti − ptari

∥∥2) represents the
maximum distance between perturbations and is employed
for normalization.

A.2. Heading Loss

The angular deviation θ between the directional vectors of
the two types of state perturbations is measured by the head-
ing loss Lheading . Lheading ensures that the direction re-
mains the same for each time step, as computed by the fol-
lowing formula:

Lheading = −

(
1

n

t∑
i=t−n+1

cos θi

)
, (2)

where θi is the angular difference between headings in time
step i.

A.3. Shape Loss

Dynamic Time Warping (DTW) [6, 9] is used in our method
to measure the similarity between the shapes of two trajec-
tories —– one from the detected perturbations P det

t and the
other from the target perturbations P tar

t . DTW is especially
suitable for comparing time series or sequences that may
differ in length or are not perfectly aligned in time. Given
P det
t =

{
pdet1 , . . . , pdetn

}
and P tar

t = {ptar1 , . . . , ptarn } are
the sequences of positions from the detected and target per-
turbations, where pdeti and ptarj represent the spatial coordi-
nates (x, y) at frame i and j, respectively. The goal of DTW

is to find the optimal alignment path π between these two
trajectories to minimize the total alignment distance.
Local distance matrix. We first compute the local distance
matrix D, where D (i, j) represents the Euclidean distance
between pdeti and ptarj :

D(i, j) =
∥∥pdeti − ptarj

∥∥ . (3)

Cumulative distance matrix. Next, we construct the cu-
mulative distance matrix C, where C(i, j) is the minimum
cumulative distance to reach point (i, j) from the start:
C(i, j) = D(i, j) + min(C(i − 1, j), C(i, j − 1), C(i −
1, j − 1)). This recursive formula ensures that each point
(i, j) in the matrix is aligned with the minimal cost from its
neighbors.
Optimal warping path. Finally, we find the optimal warp-
ing path π = {(i1, j1) , (i2, j2) , . . . , (ik, jk)} that mini-
mizes the cumulative distance. The total DTW distance
along the optimal path is:

DDTW =
∑

(i,j)∈π

D(i, j), (4)

where the path must satisfy boundary, monotonicity, and
continuity conditions, meaning it starts at (1, 1) and ends at
(n, n), moving either right, up, or diagonally.
Shape loss. The DTW distance DDTW reflects the dissimi-
larity between the detected perturbations and the target per-
turbations. To express the shape loss Lshape with DDTW ,
we normalize it as:

Lshape =
DDTW

Dmax
, (5)

where Dmax is a normalization factor, typically the largest
possible distance between points in the trajectories. The
closer the shape loss is to 0, the more similar the two per-
turbations are in shape.

The ultimate total loss Ltotal is calculated as Ltotal =
α · Lpose + β · Lheading + γ · Lshape, which assesses the
similarity between P det

t and P tar
t through various method-

ologies. The total loss helps guide the adversarial loca-
tions to generate state perturbations that closely resemble
the target in terms of spatial alignment and shape, thereby
maximizing the attack’s effectiveness. In this paper, we set
the weights of the three losses to α = 0.4, β = 0.4, and
γ = 0.2.



(a) The attack scenario in scene-0103 of nuScenes dataset. (b) The attack scenario in scene-0001 of nuScenes dataset.

Figure 1. Examples of attack scenario, viewed from the perspective of the cam-front on the victim AV.

B. Implementation Details
we further elaborate on the details of our experiment imple-
mentation, including the selection criteria of driving scenes,
the introduction of autonomous driving (AD) models used,
the search space bounds for adversarial objects, and the
hyper-parameters settings.

B.1. Selection Criteria for Driving Scenes

We manually select 50 driving scenes from the nuScenes
dataset where the ego vehicle (victim AV) is driving on
the road and the adversarial vehicle is parked roadside, as
shown in Fig. 1. In each scene, we ensure that the victim
AV remains in motion, and at the current frame, the lateral
distance between the victim AV and adversarial vehicle is
approximately 3-5 meters, with a longitudinal distance of
10-15 meters. During the attack, we identify adversarial lo-
cations using annotated key frames captured at 2Hz in the
nuScenes dataset. We then maintain the victim AV’s speed
and evaluate these locations on the unannotated nuScenes
dataset sampled at 20Hz.

B.2. Autonomous Driving Models

To ensure a fair comparison with SinglePoint Attack [3],
we employ the same AD models as it. We use PIXOR [7]
for LiDAR detection, CenterPoint Tracker [8] for tracking,
and Trajectory++ [5] for trajectory prediction, along with
a Model Predictive Control (MPC) planner [1] for motion
planning. Following official guidelines, we train the PIXOR
model using the nuScenes dataset and directly utilize the
official pre-trained Trajectron++ model on the nuScenes
dataset. In addition, we also adopt the default configuration
provided by the official source.

B.3. Search Bounds of Adversarial Objects

To ensure that the adversarial locations can be executed in
the real world, we constrain them to a reasonable, realistic
3D coordinate space. During the attack phase, the search
space is limited to a 4x4x1 m3 area above the adversarial

(a) The scenario in scene-0103. (b) The scenario in scene-0001.

Figure 2. Visualization of adversarial locations marked in red.

vehicle. In the location optimization phase, we restrict the
PSO bounds to a 4x4x0.8 m3 space above the adversarial
vehicle, with the initial location set at (2, 2, 0.4). Addi-
tionally, we define the adversarial objects as three circular
cardboard pieces. After determining three adversarial loca-
tions, we simulate the point cloud detection results for each
cardboard piece using four-point clouds. From these point
clouds, we can derive the cardboard’s center coordinates,
radius, and orientation. The orientation is set to face the
victim AV, and the radius is set to 0.1 m. For clarity, we
visualize the calculated adversarial locations in Fig. 2.

B.4. Hyper-parameters Settings

In the attack phase, we set n to 5, meaning adversarial at-
tacks are executed over five consecutive time steps. We use
the Adam optimizer with a learning rate of 0.1 for the coor-
dinate features and 0.05 for the orientation feature, iterating
for 10 epochs with a maximum of 20 iterations per epoch.
Additionally, for estimating distributions in comparative ex-
periments, we set the number of randomly generated loca-
tions Q (query) to 1000. In the location optimization phase,
we evaluate both Particle Swarm Optimization (PSO) [2]
and the Adaptive Grey Wolf Optimizer (AGWO) [4]. Al-
though both exhibit similar performance, we select PSO due
to its simpler implementation and faster search speed. We
configure PSO with 10 particles, each with 3x3 dimensions
representing the 3 adversarial locations, where each posi-
tion has x, y, and z coordinates as its features. The inertia
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Figure 3. The evaluation results of varying object diameter on the SP-Attack [3]. In the adversarial location search phase of SP-Attack, we
define the diameter of the cardboard as 0.2 meters. We then assess the impact of varying diameters at the generated adversarial locations.

1.191

0.654

1.092

0.432 0.145 0.312 0.132

2.393 2.509 2.625
2.356

2.124
1.929

1.695

0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.4 0.6 0.8 1

PR
E 

(m
et

er
)

Deviation distance (meter) 

SP-Attack OMP-Attack

Figure 4. The comparison PRE results of the robustness experi-
ments for the deviation distance between the victim AV and attack
point.
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Figure 5. The comparison CR results of the robustness experi-
ments for the deviation distance between the victim AV and attack
point.

weight is set to 1.0, and the acceleration coefficients are set
to (2.0, 2.0). The number of adversarial objects is set to 3
and the radius of the object is set to 0.1 m. We set the ob-
ject’s placement orientation to 0◦ relative to the x-axis. For
baseline settings, SP-Attack is configured using the official
default configuration, with query set to 1000.

C. Results of Attack Robustness
Figure 4 and Figure 5 respectively show the comparison re-
sults of the planning-response error (PRE) and collision rate
(CR) in the robustness experiment regarding the impact of
the victim AV’s deviation from the attack point. The results
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Figure 6. The robustness experiment of different object placement
orientations on the SP-Attack [3]. The orientation represents the
angle between the object and the positive x-axis, observed from an
overhead perspective along the z-axis.

reveal a clear downward trend in both PRE and CR as the
offset distance increases. Notably, however, OMP-Attack
demonstrates a more gradual rate of decline in performance
metrics, with a minimum PRE of 1.695 meters compared
to the significantly lower 0.132 meters observed for SP-
Attack. Furthermore, the CR for OMP-Attack remains rel-
atively stable, showing no significant reduction across in-
creasing offset distances, whereas SP-Attack experiences a
considerable drop. These results underscore the robustness
of OMP-Attack, which maintains higher performance levels
even as offset distances vary, in contrast to the more sensi-
tive performance of SP-Attack.
Robustness results on object properties of SP-Attack. To
comprehensively compare the robustness of object proper-
ties, we evaluate the effect of object size and orientation
on SP-Attack. We set the cardboard diameter to 0.2 meters
and the placement orientation to 0◦ during attack planning
and then adjusted the properties to test the attack’s sensitiv-
ity. First, we assess the impact of variations in cardboard
diameter on SP-Attack. The results in Fig. 3 indicate that
the average trajectory distance (ATD) is minimized at the
predefined diameter of 0.2 meters in SP-Attack. Adjust-
ing the diameter either upwards or downwards results in a
significant rise in ATD, highlighting the sensitivity of SP-
Attack to variations in object size. Second, we perform
a robustness experiment to explore the influence of object



Table 1. Robustness of adversarial locations against small shifts.

Shift(cm) 0 2 4 6 8

ATD(m) ↓ 6.439 6.280 5.815 6.412 6.042
PRE(m) ↑ 2.393 2.406 2.227 2.868 2.649

CR↑ 64% 63% 56% 69% 56%

Table 2. Comparison of SI algorithms. *: Time per iteration.

Methods TPI*(s) ↓ ATD(m) ↓ PRE(m) ↑ CR↑
GWO 0.141 6.687 2.404 64%

AGWO 0.257 6.432 2.557 66%
PSO 0.141 6.439 2.393 64%

Table 3. Results of OMP-Attack combined with randomly placed
objects.

Methods ATD(m) ↓ PRE(m) ↑ CR↑
w PSO (1k queries) 6.439 2.393 64%

w RPO (1k locations) 7.632 0.964 32%
w RPO (3k locations) 6.698 1.929 54%
w RPO (5k locations) 6.278 2.522 70%

orientation on SP-Attack. The results presented in Fig. 6
demonstrate that SP-Attack exhibits a degree of robustness
to cardboard orientation. However, the CR is heavily influ-
enced by the direction, with the CR peaking at 12.8% in the
worst case. This suggests that the threat posed by the attack
is dependent on the placement orientation of objects. These
sensitivities indicate that the effectiveness of SP-Attack is
closely tied to the specific adversarial object’s properties,
which can limit its robustness across varying conditions.
Robustness results on adversarial location shifts. To val-
idate the stability of our Vague Optimization strategy, we
evaluate the robustness of adversarial location offsets rang-
ing from 0 to 8 cm. As shown in Tab. 1, our framework
exhibits high robustness, achieving an ATD of below 6.5 m
and a collision rate of above 55%. This is because auxiliary
points near the center point also retain a strong attack ef-
fect. Notably, in real-world scenarios, effective attacks can
be achieved by ensuring the cardboard covers a sufficient
area of the adversarial locations, rather than requiring pre-
cise alignment. This observation further corroborates the
robustness of adversarial locations against minor spatial de-
viations.

D. Additional Ablation Experiments
This section presents additional ablation experiments, in-
cluding a comparison between PSO and the latest swarm
intelligence (SI) algorithm, as well as an analysis of the
impact of randomly placed objects on the location search
stage.
The comparison of SI algorithms. For the location opti-

mization phase, PSO surpasses the latest SI algorithm (e.g.,
AGWO [4], GWO) in search speed while achieving compa-
rable performance. We test PSO, AGWO, and GWO under
the same setups. As shown in Tab. 2, while PSO performs
slightly worse than AGWO in ATD and CR, it reduces the
time per iteration (TPI) by nearly half compared to AGWO,
making it practical for real-world attacks.
The impact of randomly placed objects. We conduct
additional ablation studies where PSO is replaced by the
randomly placed objects (RPO) method. RPO selects lo-
cations where the perturbations are closest to the computed
ones. As shown in Tab. 3, RPO requires 5k random loca-
tions to achieve performance compared to PSO with only 1k
queries (involving 10 particles and 100 iterations), demon-
strating the superior efficiency of our framework.
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