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6. Details for the parameterized BRDF model
The detailed formula of D and G in Eq.(3) are as follows:
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where N is the surface normal, and R is the surface metal-
lic. Both of them have the same definition as Eq.(4), with
the pixel coordinates (x, y) omitted. w; and w,. are the in-
cident and reflection direction, respectively. The specular
distribution term D describes the microfacet normal direc-
tion distribution. Here we use Beckmann distribution [16]
as D. The geometry term describes the cast shadow of the
microfacet model. We use the same formula in the Disney
BRDF model [4] and Torrance-Sparrow model [26] as G.

7. Event Integral Drifting issue

We show a case of event integral curve in Fig. 9. Due
to non-ideal triggering of real event camera, the integral
of events (orange line) can be constantly rising or falling,
causing mismatch compared with rendered database (green
line). However, as shown in Eq. (9), we directly compare
each individual pair of events with the rendered database
without the event integral, to avoid the event integral drift-
ing issue.
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Figure 9. Demonstration of the event integral drifting issue. The
integral of the event signal (orange line) is constantly rising in this
example, while the actual intensity (green line) is returning to the
initial value.

8. Device Coverage

The monitors in our data acquisition platform surround the
objects horizontally, leaving two uncovered areas at the top
and bottom. For a mirror ball, the coverage map, shown in
Fig. 10, reveals these uncovered regions at the center and
border of the object. Within the coverage region, surface
normal and material properties are accurately estimated,
while in the uncovered areas, they are interpolated during
the second gradient-tuning stage. We achieved a coverage
area of 69.25%, using five monitors in our data acquisition
platform. This coverage can be further improved with a
more compact monitor arrangement.

9. Roughness and Metallic Standardization

The definitions of roughness and metallic vary across dif-
ferent models used by comparison methods. To ensure con-
sistency, we normalize the roughness and metallic outputs
for all results in the logarithmic domain. Let the original
output of a method on the entire synthetic dataset be repre-
sented as a vector X (where X can denote either roughness
or metallic), and let the ground truth values be represented
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Figure 10. The coverage map on data acquisition platform. The
cyan on the sphere represents the area that can be covered by the
light scanning pattern. The red area is the uncovered area.

as X. The normalized method output X* is defined as:

_ std(log(X) — mean(log(X)))

 std(log(X) — mean(log(X)))7 3
T = mean(log(X)) — mean(log(X)) S, ()
X* =exp(log(X) * S+ T).

This process is similar to applying batch normalization to
the logarithmic roughness and metallic values across the en-
tire synthetic dataset. Consequently, the mean and standard
deviation of the log-transformed roughness and metallic are
aligned with those of the ground truth. By normalization
in this manner, discrepancies in scale and power across dif-
ferent material property definitions are eliminated, ensuring
fair and consistent quantitative comparisons.

10. Robustness on Various Materials

To demonstrate the robustness of EventPSR in recovering
various materials, we evaluate the performance of the three
methods on a cow object with 6 different surface materials,
from ideal Lambertion to pure mirror, as shown in Fig. 11.
Since the PS-based method [13] is designed from the Lam-
bertian reflection model, the error of normal estimation is
becoming larger as the surface material is becoming shiny.
The shiny materials are also challenging for NeRF-based
method [31], which even failed to reconstruct the object af-
ter the “rough metallic” material in Fig. 11. Because highly
specular and metallic materials are too challenging for the
geometry initialization stage in NeILF++ [31].
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Ours Normal o . 3.345 2.093 1.362 1.401
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Figure 11. Case study on robustness. The materials of objects in
the first row vary from ideal Lambertian to pure mirror. EventPSR
performs consistently for different materials, while the comparing
methods fail or have an increasing error as the specular part gets
more and more dominant.
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11. Additional Results on Synthetic Data

To evaluate the performance of EventPSR, we conduct
extensive experiments on synthetic dataset, as shown in
Fig. 13. The synthetic dataset includes objects with varying
levels of roughness, metallicity, and geometric complexity
to test the robustness and versatility of our method.

12. Ablation study
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Figure 12. Ablation study shows that, high illumination coverage
ratio and the full two-stage pipiline solution are both essetial to
achieve high eccuracy.

We conduct ablation experiments on synthetic data with
reduced light coverage ratio using a hemisphere (50% cov-
erage ratio) and evaluate our two-stage estimation pipeline.
As shown in Fig. 12, hemisphere illumination yields higher
errors in bottom and boundary areas, likely due to specular



reflection in uncovered regions. The first-stage-only results
exhibit high overall error, likely due to low parameter res-
olution, while the second-stage-only results show incorrect
patches, possibly stuck in local minima. The full pipeline’s
superior accuracy underscores the importance of both high
light coverage and our proposed two-stage solution.

13. Discussion and Potential Improvements.

The accuracy of our current solution is bottlenecked by
non-Lambertian effects, and the speed is limited by the
illumination device. We propose several potential exten-
sions: First, to enhance robustness against cast shadows and
inter-reflections, explicit modeling methods such as DANI-
Net [18] or deep learning-based PS [5, 14] can be employed.
Besides, applying a multi-view system can provide more
comprehensive coverage of specular regions under limited
illumination. For the diffuse albedo recovery, we can inte-
grate a frame-based camera to create a hybrid camera sys-
tem, or leverage alternative intensity estimation techniques
like [11]. For the illumination system, we utilize multiple
OLED panels for broad light coverage, uniform intensity,
and mostly white color. A different illumination setup may
have non-uniform intensity & color, or position misalign-
ment. These artifacts can be reduced by the end-to-end cal-
ibration process. For real-time capturing, our high event
efficiency design depicted in Fig. 2 (c) suggests that the
event camera can accommodate illumination with increased
speed. To achieve real-time processing, we can replace the
grid search with more efficient algorithms, such as heuristic
search or locality-sensitive hashing.

14. Light Pattern and Relighting Result Video

We provide a video including the working data acquisition
platform, and the light scanning pattern illuminated by the
monitors. We also render the object relighting results with
white uniform albedo in the supplementary video.
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Figure 13. Additional evaluation results on the synthetic dataset.



