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A. Algorithm
Please see algorithm 1.

B. Experiments setting
B.1. Datasets
We conduct extensive experiments on CIFAR-100 [14] and
ImageNet-R [9] with 5 incremental tasks to evaluate the
effectiveness of our FedTA in addressing spatial-temporal
catastrophic forgetting. CIFAR-100 is a widely used bench-
mark dataset and consists of 60,000 RGB color images,
each of size 32x32 pixels, classified into 100 different
classes. The ImageNet-R dataset consists of 200 classes,
containing 24,000 training samples and 6,000 testing sam-
ples. It is worth noting that ImageNet-R serves as a robust
metric for evaluating the generalization capability of pre-
trained models, and it is used to assess performance in con-
tinual learning methods [33].

B.2. Implementation Details
In our setup, the federated system consists of five clients and
one central server, and each client possesses a sequence of
five tasks. We repeat experiments with three random seeds
(42,1999,2024) and report the averaged outcomes. Across
all methods, we fix the number of clients at five and the
interval rounds for increments at five. We employ Adam
as the optimizer with a learning rate of 0.001. The whole
training process is performed sequentially on an NVIDIA
GPU RTX-3090.

B.3. Baselines
FedAvg [26]: FedAvg is a fundamental algorithm in feder-
ated learning. It works by first distributing a global model to
multiple clients. Each client trains the model locally using
its own data for a few epochs. Then, the clients send their
locally updated models back to a central server. The server
aggregates these local models by computing their weighted
average to update the global model. This process is repeated
for several rounds until the global model converges.

FedProx [17]: FedProx is an algorithm designed to ad-
dress issues in federated learning, particularly the chal-
lenges of heterogeneous data and varying computational ca-
pabilities among clients. It extends the FedAvg algorithm
by introducing a proximal term to the local objective func-
tion. This proximal term helps to keep local updates closer
to the global model, reducing the impact of local model di-
vergence.

FedLwF [23]:LwF is a distillation-based method. In-
stead of unlabeled data, LwF leverages new task data to
perform distillation. FedLwF denotes FedAvg with LwF
applied to clients.

GLFC (Global Local Forgetting Compensation) [3]: a
synchronous FCIL method. GLFC designs a class-aware
gradient compensation loss and a class-semantic relation
distillation loss to mitigate forgetting and distill consistent
inter-class relations across tasks. A proxy server is imple-
mented to select the optimal previous global model to as-
sist the class-semantic relation distillation and a prototype
gradient-based communication mechanism is developed to
protect data privacy.

TARGET [41]: TARGET is an asynchronous Federated
Class-Continual Learning method that effectively mitigates
catastrophic forgetting by leveraging prior globally trained
models for knowledge transfer at the model level and gener-
ating synthetic data to simulate the global data distribution
at the data level.

MFCL [1]: MFCL (Mimicking Federated Continual
Learning) leverages a generative model trained on the server
to synthesize samples from past data distributions, which
are then used alongside the training data to mitigate catas-
trophic forgetting. To preserve privacy, the generative
model is trained by the server using data-free methods at
the end of each task without requesting data from clients.

FedViT [4]: a hybrid method of ViT and FedAvg. ViT
segments the image into fixed-size small blocks, referred to
as “patches,” and treats these patches as “tokens” in a se-
quence, which are then fed into a Transformer encoder for
processing. The global aggregation is performed by com-
puting the average weights of the classification heads.

FedL2P [34]: a hybrid method of L2P and FedAvg. L2P
is a prompt-based CL method, which applies learnable task-
specific prompts to mitigate forgetting.

FedDualP [33]: a hybrid method of DualPrompt and
FedAvg. DualPrompt, a prompt-based CL method derived
from L2P, decouples the learnable prompts into general and
expert prompts, encoding task-invariant and task-specific
knowledge, respectively.

FedNova [31]: normalizes the gradient weights to elim-
inate objective inconsistency of local training.

FedMGP [40]: FedMGP takes into account the multi-
granularity expression of knowledge, promoting the spatial-
temporal integration of knowledge.

Ours-w/o TA refers to our method without Tail An-
chor. Ours-w/o SIKF refers to our method without Selec-



Algorithm 1: FedTA Algorithm.

Input: a clients A = {Ai}ai=1 with their own task sequence Ti = {Tn
i }Nn=1, a pre-trained frozen ViT V without

classification head, a pre-set threshold Thres for measuring similarity.
Output: Fused global input enhancement knowledge base KBG, best global prototypes PG with the lowest average

similarity.
1 Initialization;
2 while task number n ≤ N do
3 for each client Ai, 1 ≤ i ≤ a do
4 Vi

e ← LoadHead(Hi
e,V);

5 Stage 1: Training Input Enhancement:
6 for each {x, y} ∈ Tn

i do
7 E ← EmbeddingLayer(x);
8 {Kie

chosen, IEchosen} ← QueryforInputEnhancement (E,V,KBi);
// Key-value pair.

9 E′ ← concatenation(E, IEchosen);
10 Lce ← Classify(Vi

g, E
′, y) ;

// Classification loss with Vi
e.

11 Optimize(Lce, H
i
e,K

ie
chosen, IEchosen);

// Equ. 3.
12 Freeze Input Enhancement;
13 Stage 2: Training Tail Anchor:
14 for each {x, y} ∈ Tn

i do
15 E′ ← GetInputEnhancement(x,KBi,V);
16 {Kta

chosen, TAchosen} ← QueryforTailAnchor(T Ai, E
′,Vi

e);
17 FTA←MixFeatureWithTailAnchor(Vi

e(x), TAchosen);
18 Lce ← Classify(FTA, y);
19 if Pg is not none then
20 Lcons ← ContrastiveLearning(Pg,FTA);

// Equ. 5.
21 Optimize(LCE ,Lcons,Hi

e,K
ta
chosen, TAchosen);

22 Freeze Tail Anchor;
23 Pi← ComputerLocalPrototype(T n

i , T Ai,KBi,Vi
e) ;

24 Server aggregation:
25 For Input Enhancement:
26 KBG ← SelectivePromptFusion(KB1,KB2, . . . ,KBa) ;
27 For Local Prototypes:
28 M← SimilarityAdjacentMatrix(P1,P2, . . . ,Pa);
29 for each class Y in T n do
30 (PY

G , SimiY )← FindLowestAvergeSimilarity(M, Y );
31 if SimiY ≤ Thres then
32 FixGlobalPrototype(PY

G );
// The global prototype of class Y will not be changed again.

33 Add PY
G into PG;

34 Distribute PG and KBG to all clients for next task training.

tive Input Knowledge Fusion. Ours-w/o BGPS refers to
our method without Best Global Prototype Selection.

C. Detailed Analysis of Fig.4

Both on CIFAR-100 and on ImageNet-R, FedTA demon-
strates satisfactory retention of spatial and temporal knowl-
edge. Moreover, ablation experiments indicate that if the
Tail Anchor component is removed, FedTA would also



Table 2: Accuracy of the local model testing on local test sets.

Algorithm
CIFAR-100 Imagenet-R

Task ID Task ID
1 2 3 4 5 1 2 3 4 5

FedAvg[26] 65.1 68.2 72.5 72.9 76.1 40.1 42.5 42.5 47.0 46.4
FedProx[17] 56.5 55.2 61.1 59.3 62.8 33.3 31.2 32.1 33.9 34.1

GLFC[3] 95.3 77.3 92.7 85.5 79.8 87.4 61.2 81.6 68.7 76.5
FedLwF 74.5 12.5 17.1 13.6 9.7 34.3 9.2 2.6 4.0 3.8

TARGET[41] 73.9 46.2 32.5 15.2 13.2 45.4 17.2 17.4 19.1 18.6
MFCL[1] 52.3 16.8 11.8 14.6 13.4 31.6 14.5 16.2 13.3 13.8

FedViT 87.3 87.1 86.8 86.4 87.1 80.0 74.7 74.1 76.1 75.9
FedL2P[32] 89.8 88.3 72.2 58.5 57.1 86.7 84.6 84.6 86.7 84.7

FedDualP[33] 76.4 75.8 74.9 73.9 75.9 65.7 61.8 60.5 60.6 61.8

Ours (FedTA) 97.0 96.6 96.6 96.8 92.2 81.7 80.5 80.1 82.3 85.9
Ours-w/o TA 81.7 78.5 78.7 77.7 77.0 84.2 80.5 76.1 80.5 79.5

Ours-w/o SIKF 91.5 91.5 92.2 92.0 92.1 83.3 81.6 80.3 81.7 80.8
Ours-w/o BGPS 91.7 93.3 90.5 92.8 92.9 82.5 79.1 81.5 83.1 80.4

suffer from severe spatial-temporal catastrophic forgetting.
The next best performer is FedViT, which, by freezing all
parameters and leaving only a trainable classification head,
can effectively overcome parameter-forgetting. However,
the output-forgetting of the classification head is inevitable.

It is worth noting that although TARGET, FedLwF and
MFCL have achieved over 90% in spatial knowledge reten-
tion, the accuracy of these methods’ local models before
aggregation was already quite low. Therefore, when com-
pared to the accuracy after aggregation, it appears that the
spatial knowledge retention is high. Table 2 displays the
performance of the local models on their local test sets be-
fore aggregation, where FedTA still performs the best. Ad-
ditionally, among the four novel components we designed,
the Tail Anchor has been proven by ablation experiments
to be the most effective part, both in overcoming the neg-
ative impact of spatial-temporal data heterogeneity and in
enhancing model performance.

D. Detailed Analysis of Fig.5

Since the feature extractor of ViT is frozen, only Input En-
hancement and Tail Anchor components affect the position
of the features. Moreover, these two components are likely
to be used by samples from different batches, leading to
parameter-forgetting. Therefore, we conduct a sensitivity
analysis on the number of these two components, attempt-
ing to find the optimal combination.

Fig. 5 illustrates the changes in feature positions after
FCL when different quantities of Input Enhancement and
Tail Anchor are combined. When the number of Tail An-
chors is set to 100, regardless of the quantity of Input En-
hancements, the features of a portion of the data still deviate
from their original positions. We speculate that this is due

10 Input Enhancement
1000 Tail Anchor

100 Input Enhancement
1000 Tail Anchor

After FCL After FCL

Figure 6: T-SNE for extra sensitivity analysis.

to the insufficient number of Tail Anchors, causing samples
from the same class to match with completely dissimilar
Tail Anchors. When we set the number of Tail Anchors to
500, the number of shifted points significantly decreases.
The combination of 10 Input Enhancements and 500 Tail
Anchors shows the most satisfactory visualization results.

We can hypothesize that it seems the more Tail Anchors
there are, the fewer the number of shifted points, and the
lower the probability of output-forgetting. However, when
we set the number of Tail Anchors to 1000, as shown in
Fig. 6, it overturns our previous hypothesis. The number
of shifted points is even greater and more disordered than
when it was set to 100. We believe that this phenomenon oc-
curs because the excessive number of Tail Anchors causes
the matched Tail Anchor for the same sample to change con-
stantly during the query function, preventing convergence to
the best anchor point.



Table 3: Averaged accuracy of the global model on local test sets with 10 class-incremental tasks (CIFAR-100).

Algorithm Type Task ID
1 2 3 4 5 6 7 8 9 10 KRt KRs Time (s)

FedAvg
FL

59.2 65.1 62.5 70.8 63.0 56.2 57.9 64.9 69.1 68.6 29.3% 83.1% 39878.76
FedProx 42.6 28.6 36.43 42.5 31.8 35.6 35.6 33.1 39.7 24.8 41.2% 55.7% 41214.89
FedNova 24.0 27.9 28.1 21.4 33.1 26.0 27.1 16.0 33.6 28.7 33.5% 42.6% 47507.69

FedLwF

FL+CL

60.7 28.1 29.1 20.1 34.7 31.3 22.3 26.4 20.6 15.6 36.7% 87.0% 29716.53
FedViT 84.6 80.4 85.7 77.3 81.3 76.4 72.7 80.6 78.9 82.2 23.0% 94.8% 27718.24
FedL2P 59.4 58.7 61.8 58.0 49.1 52.8 56.1 63.8 52.5 52.6 67.1% 60.5% 17894.10

FedDualP 62.4 77.1 67.2 66.6 63.9 42.5 60.8 46.4 64.4 64.7 22.0% 74.8% 68140.25

GLFC

FCL

44.3 61.7 89.5 77.4 85.9 63.6 74.5 78.5 81.9 82.7 64.5% 87.0% 61677.32
TARGET 64.15 23.0 8.25 12.8 19.4 12.8 20.9 14.9 20.2 13.1 57.5% 82.0% 6676.68

MFCL 59.9 21.0 1.7 36.3 17.5 17.3 18.2 17.0 21.5 21.5 67.2% 91.8% 38093.29
FedWEIT 50.8 38.7 32.6 39.4 43.4 37.0 45.9 44.9 37.7 53.2 61.7% 65.9% 82324.58
FedSpace 47.7 55.7 54.2 45.3 48.3 56.8 46.2 53.2 47.3 58.2 45.7% 79.9% 89324.88

FedTA FCL 91.4 95.3 93.8 92.3 93.7 89.5 92.5 94.2 91.9 90.6 98.6% 99.8% 47013.82

It is worth noting that compared to the output forget-
ting caused by traditional methods, FedTA has greatly
alleviated the issue of output shifts caused by spatial-
temporal changes, enabling it to overcome the negative im-
pacts brought about by spatial-temporal data heterogeneity,
namely, spatial-temporal catastrophic forgetting.

E. Experiments with more tasks and extra
baselines

There are a total of 3 clients, each with 25 private classes
and 25 public classes, meaning each client has data from
50 classes. Each client performs 10 incremental tasks, with
each task containing 5 classes. The data among clients and
between tasks is non-overlapping, ensuring strong spatial-
temporal data heterogeneity. Please note that in this sce-
nario, we have only considered the situation with three
clients, as the limitation of the CIFAR-100 does not ensure
high spatial data heterogeneity with multiple clients. Such
data distribution not only ensures strong data heterogeneity
among clients but also maintains strong data heterogeneity
between tasks. This presents a more challenging and, at
the same time, more practically significant problem in com-
bating both spatial and temporal forgetting. The final re-
sults indicate that FedTA not only surpasses other baseline
methods on the two newly established metrics (i.e., Tem-
poral Knowledge Retention and Spatial Knowledge Reten-
tion), but also achieves a significant improvement in accu-
racy. This implies that FedTA has successfully preserved
local knowledge during the aggregation process, enabling
the aggregated global model to perform so well on the local
test sets.

To more intuitively illustrate the communication over-
head and low training cost of FedTA, we have added a
“Training Time” column in the last column of the addi-
tional experimental results in Table 3. This allows readers to
more directly compare the advantages of different methods
through training time. Below are the result of training time.
From the results, it can be seen that compared to FedAvg,
our method incurs a slightly higher cost in training time,
primarily spent in the server’s selective input knowledge
fusion phase, as it involves knowledge distillation across
multiple local models. However, compared to other FCL
methods, our approach has reduced the training time.
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