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Supplementary Material

A. The METASCENES Dataset
A.1. Data Acquisition details

Small objects capturing METASCENES includes numer-
ous small objects, a category that existing datasets [1, 15]
often fail to capture effectively. We follow a structured ap-
proach to identify and capture small objects that may be
difficult to locate within a scene. First, we manually curate a
list of support objects—such as tables and shelves—that are
likely to either support or contain small objects. Next, we
utilize SAM [8] to generate 2D masks for these support ob-
jects. These masked images are then input into GPT-4V [18]
to prompt potential small objects that may be positioned on
or within these support objects. Finally, we employ YOLO-
v8 [6] to detect and segment these small objects within the
scene. The prompt used to guide GPT-4V in capturing small
objects is presented in Tab. A1.

Object captions generation To generate detailed object
captions that describe object attributes, we employ GPT-
4V [18] for description prompting. The object captions are
categorized into two types: Object appearance, which detail
visual characteristics such as color, shape, and texture. Phys-
ical attribute, which cover attributes like physics properties,
mass, friction and bounciness. These two types of captions
comprehensive coverage of object features, enabling a nu-
anced understanding of each object’s role within the scene.
We show some examples in Tab. A2. The prompt used to
guide GPT-4V in generating physical attribute captions is
presented in Tab. A1.

Asset candidates curation To replace each object with
simulatable 3D assets, our goal is to identify diverse, high-
quality candidates that closely resemble the original objects.
For each scanned object, we generate 10 asset candidates us-
ing a combination of methods: text-to-3D generation, image-
to-3D generation, and text-to-3D retrieval. The models for
generating these 10 candidates are detailed in Fig. A1. These
candidates ensure a balance of variety and fidelity, offering
multiple options for replacement that enhance realism and
physical plausibility. We show additional qualitative ex-
amples of asset candidates in our METASCENES dataset
in Fig. A5.

For texture optimization, we refine the UV unwrapping
process to improve the handling of complex object shapes.
Instead of using the open-source UV-Atlas tool, as adopted
in Paint3D [20]. We employ Blender’s Smart UV unwrap-
ping to preprocess images. This approach generates a UV
map with fewer fragments and greater stability, facilitating
smoother and more effective texture optimization. This re-

Figure A1. Models for generate asset candidates. For each object,
we generate 10 asset candidates (labeled as 1–10 in the figure) by
leveraging a combination of approaches: text-to-3D generation,
image-to-3D generation, and text-to-3D retrieval.

finement is particularly beneficial for assets with intricate
geometries, ensuring more consistent and visually appealing
texture mapping.

A.2. Data Annotation and processing details

Human annotation We outline a typical annotation work-
flow that begins with a real-world scene represented as a
point cloud. Annotators freely pan the camera to explore the
entire scene, with an overlaid interface that remains synchro-
nized with their view. The annotation process involves the
following three sequential steps:

(i) Selection: Annotators select an object from the list
of unannotated objects. Once an object is selected,
a panel displays a list of candidate 3D assets corre-
sponding to the object. Annotators are instructed to
evaluate and identify the best-matching 3D asset based
on visual and geometric similarity.

(ii) Transformation: The selected 3D asset is automat-
ically integrated into the scene with a preprocessed
scale and orientation. Annotators can then refine the
placement by adjusting the asset’s position, height,
scale, and rotation to ensure accurate alignment with
the point cloud and image.

(iii) Ranking: Annotators rank the remaining 9 candidate
assets, identifying the top 2–5 objects that also closely
match the real-world object. As shown in Fig. A2.

We recruited annotators to ensure the quality and accuracy
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Table A1. Prompts used in METASCENES.

Purpose Prompt

Small object capturing You will be provided with an image containing a label. Your task is to carefully analyze the image and list
the items present on the surface of the label.
Please ensure that you only include items that are on its surface and not those nearby. If you think there is
nothing on this label, please return an empty list.
Each item should be described in a concise and accurate manner and returned in JSON format.
Each item’s JSON object should include the following fields:
- item: The name of the object
- color: The color of the object
Example Output:
If there is a black mouse pad and a red cup on the table, your output should be:
[{ ‘item’: ‘mouse pad’, ‘color’: ‘black’ }, { ‘item’: ‘cup’,
‘color’: ‘red’ }]
Image: A real-world image containing a table.
Label: Table

Physical attribute Given the following object label and its size, please output the physics attributes of the object in strict
JSON format, including:
Physics Properties: Classify the object into one of the following categories:
Rigid Body (e.g., Table, Chair, Book, Ball, Cup, Box, Door)
Cloth (e.g., T-shirt, Curtain, Tablecloth, Flag, Bed sheet, Towel, Pants)
Soft Body (e.g., Jelly, Soft toy, Rubber ball, Cushion, Slime, Foam, Balloon)
Mass: Estimate the mass of the object based on its label and bbox size. The mass value should be a float
number.
- For small objects (e.g., ball, book), the mass should be between 0.1 to 5.0.
- For medium objects (e.g., table, chair), the mass should be between 5.0 to 50.0.
- For large objects (e.g., building, vehicle), the mass should be above 50.0, depending on the object’s real
properties.
Friction: Assign a friction value between 0 and 1 based on the object type. The friction value should be a
float number:
- 0.0: No friction (completely smooth, slides freely).
- 0.1 - 0.3: Low friction (slight resistance, still easy to slide).
- 0.4 - 0.6: Medium friction (noticeable resistance, sliding becomes difficult).
- 0.7 - 1.0: High friction (almost no sliding, quickly stops after collision).
- > 1.0: Super high friction (very high resistance, may "stick" together, preventing sliding).
Bounciness: Assign an integer value of 0 or 1 to indicate whether the object bounces or not:
- 0: Does not bounce.
- 1: Bounces.
Output Format: Please format your output strictly as JSON, ensuring that mass and friction are float values,
and bounciness is an integer:
{ ‘physics_attributes’: ‘category’:{Rigid Body | Cloth | Soft Body},
‘mass’: [float], ‘friction’: [float], ‘bounciness’:[int]}
Object Label: Chair
Object Size: [1.2, 1.0, 0.6]

of the 3D scene reconstruction process. Annotators were
instructed to follow these detailed guidelines: (i) Object
Matching. Annotators were required to select 3D assets that
closely align with the observed categories, shapes, and sizes
of the objects in the scene. Accurate matching between
the original objects and their replica creations is critical for
maintaining realism. (ii) Object Consistency. For objects
with uniform appearance across the scene, the same 3D asset
must be consistently selected for replacement. (iii) Spatial

Accuracy. Each object must be placed and oriented to match
its position in the 3D point cloud and accompanying image
as closely as possible. Annotators were instructed to avoid
misplacements, such as collisions between objects or floating
artifacts, to the greatest extent feasible.

To ensure the accuracy and reliability of the annotation
results, we implemented a quality control process as follows:
For each batch of annotated data, 10% of the samples are
randomly selected for accuracy verification. If more than
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Table A2. Examples of object captions in METASCENES. Note
that ‘Friction’ assign a friction value between 0 and 1 based on the
object type and ‘Bounciness’ assign an integer value of 1 or 0 to
indicate whether the object bounces or not.

Image Object Appearance Physical Attributes

A fabric and plastic
soft office chair in red
color.

• Rigid body
• Mass: 20 kg
• Friction: 0.5
• Bounciness: 0

A fabric soft blanket
in white color.

• Cloth
• Mass: 10 kg
• Friction: 0.3
• Bounciness: 0

A fabric smooth pil-
low in multi-colored.

• Soft Body
• Mass: 1 kg
• Friction: 0.3
• Bounciness: 0

A fabric soft stuffed
animal in brown
color.

• Soft Body
• Mass: 0.5 kg
• Friction: 0.3
• Bounciness: 1

Figure A2. Annotation interface of object ranking. Once the best-
match asset is selected, annotators are asked to rank the remaining
9 candidate assets.

98% of the inspected samples pass the reviewer’s validation,
the batch is deemed acceptable. Otherwise, the annotators
are required to re-label the entire batch to address potential
errors and meet the quality standards.

Physics-based Optimization We use Markov Chain
Monte Carlo (MCMC) to traverse the non-differentiable
solution space, optimizing the horizontal and vertical place-
ment of objects to prevent issues like collisions or floating
objects. See Algorithm 1 for the pseudo code. To quantify
collisions for m objects in scene S, we compute the collision
loss as follows:

L “

m
ÿ

i“1

m
ÿ

j“i`1

IoUpBBoxpoiq,BBoxpojqq, (A1)

where BBoxp¨q represents the 3D bounding box of object,
and IoU denotes the Intersection over Union metric. The loss
L aggregates the pairwise IoU values for all unique object
pairs. This formulation allows the optimization process to
iteratively minimize L, effectively reducing collisions and
ensuring proper spatial arrangements in the scene.

Algorithm 1: MCMC Optimization Algorithm
Input : Scene S with m objects at their initial

positions, where S “ to1, o2, . . . , omu

Output : Scene S with m objects at their optimized
positions.

1: n Ð 0 {Initialize MCMC step counter}
2: T Ð tt1, t2, t3, t4u {Set of possible movements along

parameter axes}
3: L0 Ð CalculateCollisionLoss(S) {Initial collision loss}

4: Lmin Ð L0 {Track the minimum collision loss}
5: while Ln ą 0 and n ă MaxStep do
6: for i “ 1 to m do
7: Randomly select a movement t P T and apply it to

object oi
8: if oi remains within scene boundaries then
9: Compute the new position for oi

10: Li
n Ð CalculateCollisionLoss(S) {Collision

loss after moving oi}
11: if Li

n ă Lmin then
12: Update the position of oi
13: Lmin Ð Li

n {Update the minimum loss}
14: else
15: Revert the position of oi
16: end if
17: end if
18: end for
19: n Ð n ` 1 {Increment the MCMC step counter}
20: end while

A.3. METASCENES statistics

We present histograms showing the distribution of ob-
ject counts and object categories per scene in Fig. A6a
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Figure A3. Scene examples. We compare the scenes in METASCENES (left) with its original 3D point cloud (right). Note that layouts are
set to be invisible.

and Fig. A6b. Additionally, we include a box plot illus-
trating the distribution of physical sizes (measured in vol-
ume, m3) for the top 50 most frequent object categories
in Fig. A7. Fig. A4 shows a word cloud visualization of
categories in METASCENES, with the text font size repre-
senting the total count of unique object instances in each
category. We see that our dataset contains a diverse set of
object categories. Qualitative examples of scenes from our
METASCENES dataset can be found in Fig. A3. For the effi-
ciency of dataset creation, the end-to-end preprocessing of a
scene with 39 preprocessed object candidates takes approxi-
mately 12 minutes. The time for object candidate creation
depends on the reconstruction model used. Each annotator
takes about 2 minutes to annotate one object.

B. Experiment Details
B.1. Automated Replica Creation

Model Training We train our optimal asset retrieval model
using a training set of 600 scenes, which includes a total
of 13125 objects. For point cloud encoding, we finetune
the PointBERT pretrained on [16], and for image and text
encoding, we utilized OpenCLIP. During training, we ap-
plied standard data augmentation techniques to the 3D point

Figure A4. Word cloud of object categories in METASCENES.
Font sizes indicate unique instance count per category.

clouds, such as random point dropping, scaling, shifting, and
rotational perturbations, to enhance model robustness.

Baselines We detail the setup for the comparative models,
through two key components: Optimal Asset Selection and
Object Pose Alignment.

(i) Optimal Asset Selection. We evaluate METASCENES
against state-of-the-art multimodal alignment methods, as
summarized in ?? in the main paper. For the Uni3D [22]
baseline, we use OpenCLIP with the model configuration
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Figure A5. Overview of our asset candidates. Note that “*” indicates texture optimization.

(a) Distribution of Object Counts Per Scene. (b) Distribution of Object Categories Per Scene.

Figure A6. Object statistics in METASCENES.

“EVA02-E-14-plus” as the image and text encoder. This
advanced Transformer-based model is pre-trained to re-
construct robust language-aligned visual features through
masked image modeling, enabling strong cross-modal align-
ment capabilities. The Point-BERT [19] is pre-trained on the
ModelNet40 dataset, while PointNet++ [11] is pre-trained
on the SceneVerse [5] dataset. For the ACDC [2] frame-
work, we employ CLIP and DINO-v2 [9] to identify the
best-matching assets.

(ii) Object Pose Alignment. In the ACDC framework, we
first utilize DINO-v2 to determine the optimal orientation
of the asset. Once the best orientation is selected, we apply
a render-and-compare method to adjust the asset’s scale.
Specifically, after identifying the optimal orientation, we

scale the asset across a range of factors from 0.5 to 1.5 and
render both the asset and the corresponding real-world object
into the 2D image. The asset’s scale is then determined by
comparing the 2D bounding box sizes of the rendered asset
and the real-world object in the 2D image, with the best-
matching scale corresponding to the minimal discrepancy
between the two boxes.

Metrics We detail the metrics used in our experiment as
follows: Chamfer Distance (CD) measures the average dis-
tance between point clouds. Enhanced Chamfer Distance
(ECD) extends CD by incorporating curvature and geometric
features to better capture fine details. Bounding Box Inter-
section over Union (Bbox IoU) calculates the intersection
over union for the 3D bounding boxes of the assets. Color
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Figure A7. Box plot of the physical size distribution. This shows a wide range of object sizes, with the size distribution clearly highlighting
a significant contrast between larger and smaller objects.

Figure A8. Diverse results of the micro-scene synthesis. The model is capable of generating varied layouts for the same large furniture.

Histograms (Color Hist) compute the Kullback-Leibler di-
vergence between the color distributions of the selected and
ground truth assets.

B.2. Micro-Scene Synthesis

Data Processing We preprocess METASCENES by divid-
ing the rooms into micro-scenes. Each micro-scene contains
one large object and several corresponding smaller objects
placed on it. We retain the large object categories similar
to those in 3D-FRONT, such as “sofa,” “cabinet,” and “ta-
ble”. For a small portion of objects with unknown categories,
we classify them as “object”. Additionally, we merge over
400 open-vocabulary object names into 60 categories: 25
for large objects and 43 for small objects, with 8 categories
shared between them, as shown in Tab. A3. After processing,
the micro-scene dataset consists of 1,012 micro-scenes and
773 object assets. The quantity distribution of each cate-

gory in the preprocessed micro-scene dataset is illustrated
in Fig. A10.

Model Setting In our setup, micro-scenes do not require
the shape of the floor plan. Therefore, for all three models,
i.e., ATISS [10], DiffuScene [14], and PhyScene [17], we ex-
clude the floor plan input and layout encoder. For DiffuScene
and PhyScene, we set the maximum number of objects to
24, with the layout of the large furniture provided as the
first object vector. The models generate the remaining 23
vectors, including the empty vectors. For ATISS, the model
uses the layout of the large furniture as the first object and
then sequentially predicts the layouts of the smaller objects.
From the 1,012 processed scenes, we randomly select 803
for training and reserve the remaining 208 for testing.

Diverse Generation Results We present results with vari-
ous large furniture pieces in ??. In addition, we show diverse
results for the same large furniture, specifically selecting a ta-
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Table A3. List of 60 categories in micro-scene synthesis. The category for large furniture is marked in green and the category for small
object is marked with underline. There are 8 categories shared between both groups.

alarm_clock bag basket bathtub bed bin
book bottle box bucket cabinet can
chair clothing coffee_table computer cooking_machine counter

decoration desk dining_table earphone electronic_devices end_table
food instrument kettle keyboard kitchenware lamp
ledge monitor mouse mouse_pad mug nightstand
object organizer phone picture pillow plant

refrigerator remote_control round_table shelf sink sofa
stool table tissue_paper toilet tool towel
toy tv tv_stand wardrobe washing_machine washing_stuff

ble. As shown in Fig. A8, the model is capable of generating
varied layouts for the same large furniture.

Room Type - Object Category Relationship We train
DiffuScene with a text embedding module, where the prompt
includes both the large object’s category and the room type.
For example: “A counter in the kitchen”. The text encoder
from CLIP [12] is used to embed the prompt. During infer-
ence, we generate layouts with a fixed large object, specifi-
cally a table, while varying the room type, such as “A table
in the office”. We calculate the related small object’s cate-
gory distribution for each room type. The results in Fig. A11
demonstrate that the model has learned distinct category dis-
tributions for different room types. For example, “monitor”
has the highest probability of appearing in “office”, “cook-
ing_machine” is most likely in “kitchen”, and “bag” is most
often found in “Bookstore/Library”. These findings also
validate the effectiveness of our METASCENES.

B.3. Embodied Navigation in 3D scenes

Data and Simulation Setup We use the Habitat simulator
for our data generation and simulation. For data generation,
we convert all glb format files into the desired format in
Habitat. To generate trajectories for training, we randomly
sample a start position for the agent and a navigable tar-
get object except for walls. For each trajectory, we sample
the ground-truth shortest path using PathFinder within the
Habitat simulator. Therefore, each trajectory consists of
the agent’s start position and end position, the ground-truth
shortest path, and the semantics of the target object. Then
these trajectories will be used for training the navigation
model. In the Habitat simulator, the agent’s action space con-
tains move forward (0.25m), turn left (30 degrees),
and turn right (30 degrees).

Model and Training Details We use SPOC [4] as our
shared model architecture, with SigLIP [21] image and text
encoders. We use a 3-layer transformer encoder and decoder
and a context window of 10. We evaluate the object navi-

gation task for the SPOC model trained on the ProcTHOR,
METASCENES, and Both, within the AI Habitat environ-
ment. The dataset consists of 706 scenes which are randomly
split into train/test on a 4:1 ratio. We randomly collect 100
trajectories from each training scene and 50 trajectories from
each testing scene for train/test data. We train or fine-tune
the model on our METASCENES navigation data with a
batch size of 256, a learning rate of 0.0001, and 70k training
steps.

Quantitative Metrics Following Eftekhar et al. [3], we
use quantitative metrics containing SR (Success Rate),
EL (Episode Length), SEL (Success weighted by Episode
Length), SPL (Success weighted by Path Length), and cur-
vature. SR represents the proportion of correctly navigated
trajectories with respect to all trajectories. EL indicates how
many actions on average are needed to successfully navigate
to the target object. SEL and SPL indicate the difference
between the ground-truth path and the predicted path by
the agent. A larger SEL or SPL value indicates a closer
alignment between the ground truth path and the actual path.
Curvature measures the smoothness of a trajectory, with
larger curvature values indicating a less smooth path. Some
qualitative examples of navigation are shown in Fig. A12.
Regardless of whether the target object is seen at the be-
ginning, the agent can navigate to the destination correctly.

Figure A9. The configuration of UP AGV and its environment.
This includes the real-world scene, the scanned scene, and the
digital replica.
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Table A4. Comparison on VLN experiments with HSSD
Benchmark Data Source SR(%)Ò ELÓ CurvatureÓ SELÒ SPLÒ

10 scenes from
Replica CAD

HSSD 27.00 33.77 0.39 26.77 23.32
METASCENES 32.00 33.71 0.46 31.56 26.91

Real-world Deployment We deploy the policy trained
on METASCENES to a real-world Automated Guided Vehi-
cle (AGV), called UP. For odometry estimation, the vehicle
combines data from a 2D Lidar, IMU, and wheel speedome-
ter. After receiving the predicted actions from the navigation
policy based on the digital replica of the scene, we down-
sample these actions at approximately 0.5-meter intervals to
create a sequence of local goals. UP plans a trajectory for
each local goal and computes the corresponding linear and
angular velocities using Dynamic Window Approach (DWA)
algorithm, ensuring collision-free execution. The AGV con-
figuration, the real-world scan, and its digital replica are
shown in Fig. A9. We present navigation scenarios in
Fig. A13, demonstrating that UP successfully reaches the
target by transferring the policy in simulation to the real
world.

Comparisons with Other Datasets We evaluate naviga-
tion models pre-trained on METASCENES and HSSD [7]
using the replica-CAD [13] dataset in Tab. A4. We randomly
selected 10 scenes in the replica-CAD dataset, and randomly
sampled the starting point and target object in each scene,
collecting 10 trajectories for testing. Finally, the two models
are tested on these 100 trajectories and the metrics are calcu-
lated. The results confirm that pre-training with our dataset
consistently yields superior performance, further verifying
our scene quality claim.
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Figure A10. Number of each category in preprocessed micro-scene dataset.

Figure A11. Generated class distribution of different room types. We generate the layout with the same large furniture using the prompt
with different room types. Results show the model has learned different class distribution of different room types.

Figure A12. Embodied Navigation. Demonstration of the embodied agent performing goal-directed navigation in Habitat.

Figure A13. Real-world transfer. Demonstration of the embodied agent performing goal-directed navigation in the real world.
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