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Supplementary Material

1. More details of MambaOut models
In this section, we show more details of MambaOut models.
The overall framework of MambaOut is illustrated in Fig-
ure 1 and our PyTorch implementation of Gated CNN block
[2] is shown in Algorithm 1. Moreover, the MambaOut
model configurations are shown in Table 1 and the hyper-
parameters to train MambaOut on ImageNet are shown in
Table 2.

2. Ablation study
The pivotal hyper-parameter in the MambaOut architecture
is the kernel size of the depthwise convolution within the
Gated CNN blocks [2]. To assess its impact, we conduct
ablation study of the kernel size and the results are shown
in Table 3. We observe that increasing the kernel size from
3 × 3 to 7 × 7 results in performance gains on both Ima-
geNet and ADE20K datasets. However, further increasing
the kernel size to 9× 9 leads to a decline in performance on
ADE20K. We conjecture that the performance drop may be
caused by the optimization difficulty of large-kernel convo-
lutions [3]. Training large-kernel convolutions [3, 13] is an-
other line of research orthogonal to this paper. In this work,
we aim to verify the Mamba concept for vision tasks instead
of building state-of-the-art convolutional neural networks.

3. Throughput comparison
Besides MACs (FLOPs), throughput is another important
metric, particularly in practical scenarios. The results in
Table 4 indicate that MambaOut achieves at least 5× higher
throughput than VMamba [14].

Model Params
(M)

MACs
(G)

Top-1
(%)

Throughput (img/s)
Train Infer

VMamba-T 22 5.6 82.2 194 582
MambaOut-Tiny 27 4.5 82.7 1055 (5.4×) 3370 (5.8×)
VMamba-S 44 11.2 83.5 117 326
MambaOut-Small 48 9.0 84.1 665 (5.7×) 2150 (6.7×)
VMamba-B 75 18.0 83.7 88 240
MambaOut-Base 85 15.8 84.2 441 (5.0×) 1375 (5.7×)

Table 4. Throughput comparision between Vmamba [14] and
MambaOut. The throughputs are measured on an RTX 4090 GPU
using PyTorch 2.3, CUDA 12.1, and float16 precision. Top-1 de-
notes the accuracy on ImageNet.

4. More MambaOut variants
In this section, we construct various MambaOut variants
to facilitate a more comprehensive comparison with visual

Algorithm 1 PyTorch code of Gated CNN block

import torch
import torch.nn as nn

class GatedCNNBlock(nn.Module):
""" Our implementation of Gated CNN Block: https

://arxiv.org/pdf/1612.08083
Args:

dim (int): Number of input and output channels
(embedding dimensions).

expansion_ratio (float): Gated MLP expansion
ratio. Default: 8/3.

kernel_size (int): Kernel size of the token
mixer of depthwise convolution. Default:
7.

conv_ratio (float): Ratio of convolution
channels to embedding dim. Default: 1.0.

Conduct convolution on partial channels can
improve paraitcal efficiency.

The idea of partial channels is from
ShuffleNet V2 (https://arxiv.org/abs
/1807.11164) and

also used by InceptionNeXt (https://arxiv.
org/abs/2303.16900) and FasterNet (
https://arxiv.org/abs/2303.03667).

norm_layer: Normalization layer. Default: nn.
LayerNorm.

act_layer: Activation layer. Default: nn.GELU.

"""
def __init__(self, dim, expansion_ratio=8/3,

kernel_size=7, conv_ratio=1.0,
norm_layer=partial(nn.LayerNorm,eps=1e

-6),
act_layer=nn.GELU):

super().__init__()
self.norm = norm_layer(dim)
hidden = int(expansion_ratio * dim)
self.fc1 = nn.Linear(dim, hidden * 2)
self.act = act_layer()
conv_channels = int(conv_ratio * dim)
self.split_indices = (hidden, hidden -

conv_channels, conv_channels)
self.conv = nn.Conv2d(conv_channels,

conv_channels, kernel_size=kernel_size,
padding=kernel_size//2, groups=
conv_channels)

self.fc2 = nn.Linear(hidden, dim)

def forward(self, x):
shortcut = x # [B, H, W, C] = x.shape
x = self.norm(x)
g, i, c = torch.split(self.fc1(x), self.

split_indices, dim=-1)
c = c.permute(0, 3, 1, 2) # [B, H, W, C] -> [B

, C, H, W]
c = self.conv(c)
c = c.permute(0, 2, 3, 1) # [B, C, H, W] -> [B

, H, W, C]
x = self.fc2(self.act(g) * torch.cat((i, c),

dim=-1))
return x + shortcut

Mamba models.

Isotropic MambaOut. We conduct experiments of
isotropic architecture for MambaOut, following ViT [4] and
Vision Mamba (Vim) [23]. The results are presented in Ta-
ble 5. LocalViM-S [9] is not included in the table because
it additionally incorporates a spatial and channel attention
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Figure 1. (a) The overall framework of MambaOut for visual recognition. Similar to ResNet [8], MambaOut adopts hierarchical
architecture with four stages. Di represents the channel dimensions at the i-th stage. (b) The architecture of Gated CNN block. The
difference between the Gated CNN block [2] and the Mamba block [6] lies in the absence of the SSM (state space model) in the Gated
CNN block.

Size Femto Tiny Small Base
Stem 3× 3 conv with stride 2; Norm; GELU; 3× 3 conv with stride 2, Norm
Downsampling layers 3× 3 conv with stride 2
Token mixer 7× 7 depthwise conv
Expansion ratio 8/3
Classifier head Global average pooling, Norm, MLP
# Blocks (3, 3, 9, 3) (3, 3, 9, 3) (3, 4, 27, 3) (3, 4, 27, 3)
# Channel (48, 96, 192, 288) (96, 192, 384, 576) (96, 192, 384, 576) (128, 256, 512, 768)
Parameters (M) 7.3 26.5 48.5 84.8
MACs (G) 1.2 4.5 9.0 15.8

Table 1. Configurations of MambaOut models. The contents in the tuples represent the configurations in the four stages of the models.

MambaOut
Femto Tiny Small Base

Input resolution 2242

Epochs 300
Batch size 4096
Optimizer AdamW
Adam ϵ 1e-8
Adam (β1, β2) (0.9, 0.999)
Learning rate 4e-3
Learning rate decay Cosine
Gradient clipping None
Warmup epochs 20
Weight decay 0.05
Rand Augment 9/0.5
Repeated Augmentation off
Cutmix 1.0
Mixup 0.8
Cutmix-Mixup switch prob 0.5
Random erasing prob 0.25
Label smoothing 0.1
Peak stochastic depth rate 0.025 0.2 0.4 0.6
Random erasing prob 0.25
EMA decay rate None

Table 2. Hyper-parameters of MambaOut on ImageNet image
classification.

module. Note that a Transformer block has two residual
sub-blocks. We can see that MambaOut-S-iso. matches the
performance of Vim-S, which supports Hypothesis 1.

MambaOut-T15 with 15 residual blocks. The num-
ber of residual blocks of MambaOut-Tiny is 18, following
ConvNeXt-T [16]. The expansion ratio of the MambaOut
block is set as 8/3 to match the parameters and MACs of the
ConvNeXt block with MLP ratio of 4. However, VMamba-
T [14] and LocalVMamba-T [9] use a different number of
blocks, i.e., 15. To ease more direct comparison, we con-
struct MambaOut-T15 with the same number of blocks and
set its expansion ratio to 4 to match the MACs. The results
are shown in Table 6. We can see that MambaOut-T15 out-
performs VMamba-T and LocalVmamba-T with the same
number of blocks.

MambaOut-Attn-T. Mamba block consists of token mix-
ers of convolution and SSM. To demonstrate the effective-
ness of attention over Mamba for short sequences, we build
two models, VMamba-Mixer-stage and MambaOut-Attn,
as presented in Table 7. Both models share the same to-
ken mixing of convolution in stages 1 and 2 because these
stages focus on local modeling. However, in stages 3 and 4,



Backbone
Token
Mixing
Type

ImageNet UperNet on ADE20K
Param MAC Acc Param MAC mIoU mIoU
(M) (G) (%) (M) (G) (SS) (MS)

VMamba-T [14] Conv + SSM 22 5.6 82.2 55 964 47.3 48.3
LocalVMamba-T [9] Conv + SSM 26 5.7 82.7 57 970 47.9 49.1
MambaOut-Tiny/k3 Conv 26 4.4 82.2 54 936 45.3 46.7
MambaOut-Tiny/k5 Conv 26 4.4 82.6 54 937 47.1 48.2
MambaOut-Tiny/k7 (default) Conv 27 4.5 82.7 54 938 47.4 48.6
MambaOut-Tiny/k9 Conv 27 4.5 82.9 54 940 46.9 48.1
MambaOut-Tiny/k11 Conv 27 4.6 82.8 54 941 46.9 47.9

Table 3. Ablation study for Mambout of the kernel size of the depthwise convolution within the Gated CNN blocks [2]. The notation ’kn’
denotes the kernel size of n × n.

Model
Residual
blocks

Params
(M)

MACs
(G)

Top-1
(%)

ViT-S [4, 20] 24 22 4.6 79.8
Vim-S [23] 24 26 5.1 80.5
MambaOut-S (iso.) 18 24 4.3 80.5

Table 5. Comparison among ViT [4], Vision Mamba (Vim) [23]
and isotropic MambaOut. MambaOut-S (iso.) is configured
with embedding dimension of 384 and expansion ratio of 8/3. Top-
1 denotes the accuracy on ImageNet.

Model
Residual
blocks

Params
(M)

MACs
(G)

Top-1
(%)

Swin-T [15] (4, 4, 12, 4) 29 4.5 81.3
ConvNeXt-T [16] (3, 3, 9, 3) 29 4.5 82.1
NAT-T [7] (6, 8, 36, 10) 28 4.3 83.2
VMamba-T [14] (2, 2, 9, 2) 22 5.6 82.2
LocalVmamba-T [9] (2, 2, 9, 2) 26 5.7 82.7
MambaOut-Tiny (3, 3, 9, 3) 27 4.5 82.7
MambaOut-T15 (2, 2, 9, 2) 32 5.5 82.9

Table 6. Comparison between MambaOut-T15 and other mod-
els. Top-1 denotes the accuracy on ImageNet. MambaOut-
T15 outperforms VMamba-T and LocalVmamba-T with the same
number of residual blocks at each stage.

VMamba-Mixed-Stage utilizes Mamba blocks with token
mixers of convolution and SSM, while MambaOut-Attn re-
places SSM with attention in these blocks, resulting in to-
ken mixers of convolution and attention. MambaOut-Attn
significantly outperforms VMamba-Mixer-stage, providing
strong support for Hypothesis 1.

Pure SSM using neither gate nor convolution. To di-
rectly compare SSM, convolution and Attention, we remove
the gate and convolution in Mamba block to obtain pure
SSM block, and construct 12-layer isotropic model like ViT.
The models are trained for 200 epochs on CIFAR-10 and
CIFAR-100 [11] (image size 322 and patch size 42). As
shown in Table 8, the pure SSM model fails to match the
performance of pure Conv or Attention models on these im-
age classification tasks.

Model Dim Params MACs CIFAR-10 CIFAR-100
Conv 64 0.7M 43M 79.8± 0.4 52.1± 0.2
Attention 64 0.7M 45M 77.3± 0.5 50.8± 0.6
SSM 64 0.7M 56M 76.1± 0.6 47.0± 0.6

Conv 192 6M 357M 88.9± 0.1 68.5± 0.3
Attention 192 6M 361M 86.9± 0.3 66.8± 0.2
SSM 192 6M 399M 86.3± 0.1 63.1± 0.6

Table 8. Performance comparison of pure SSM model (without
convolution and gate) and pure Convolution/Attention model
on CIFAR-10/100 [11].

5. More other vision tasks

Fine-grained image classification. In the paper, we limit
the scope to three commonly used visual tasks, ensuring the
rigor of our discussion. In this section, we further evalu-
ate MambaOut for fine-grained image classification. Us-
ing ImageNet pretrained checkpoints, we train and evaluate
VMamba-T and MambaOut-Tiny on fine-grained datasets
(resolution 224 × 224). From the results shown in Table 9,
we see that MambaOut-Tiny achieves an average accuracy
of 92.8, outperforming VMamba-T by 0.9 on these fine-
grained datasets. Readers interested in further exploration
can evaluate MambaOut on other specific visual tasks.

Video understanding. Video understanding is another
important long-sequence visual task. As shown in Ta-
ble 10, MambaOut-Femto does not match the performance
of VideoMamba-Ti [12] on Something-Something V2 [5],
which is consistent with Hypothesis 2.

Model Pretrained Params MACs SSV2
VideoMamba-Ti ImageNet 7M 54G 65.1
MambaOut-Femto ImageNet 7M 58G 63.6

Table 10. Performance of video understanding.

6. Fully-visible and causal modes on iLLaMA
Figure 3(b) in the paper illustrates that ViT [4] performs bet-
ter in the fully-visible mode compared to the causal mode.
We further conduct experiments on image LLaMA (iL-
LaMA) [22], a variant of the Vision Transformer that adopts



Model
Token mixers

in stages 1 & 2
Token mixers

in stages 3 & 4
Residual
blocks

Params
(M)

MACs
(G)

Top-1
(%)

VMamba-Mixed-Stage-T Conv Conv + SSM [3, 3, 9, 3] 28 5.2 82.1
MambaOut-Attn-T Conv Conv + Attention [3, 3, 9, 3] 26 4.7 83.3

Table 7. Comparison between VMamba-Mixed-Stage and MambaOut-Attn. Top-1 denotes the accuracy on ImageNet.

Model CUB-200-2011 [21] Stanford Cars [10] Stanford Dogs [1] Oxford Pets [18] FGVC Aircraft [17] Average
VMamba-T [14] 87.9 93.2 95.5 94.8 88.0 91.9
MambaOut-Tiny 88.0 94.3 95.5 95.4 90.8 92.8

Table 9. Accuracy of VMmaba-T [14] and MambaOut-Tiny on fine-grained image classification datasets. VMamba-T and
MambaOut-T are initialized with ImageNet pretrained checkpoints and then trained and evaluated on these datasets.

the LLaMA architecture and operates in causal mode by
default. We utilize the official iLLaMA codebase but re-
move the causal mask to create a fully-visible mode ver-
sion. The results in Table 11 demonstrate that iLLaMA
with fully-visible mode significantly outperforms its causal
mode counterpart, further supporting the conclusion that
causal token mixing is not necessary for visual understand-
ing tasks.

Mode ViT-T ViT-S iLLaMA-T
Casual 70.6 78.9 75.0
Fully-visible 72.2 79.8 76.2

Table 11. ImageNet accuracy of ViT [4] and iLLaMA [22] in
casual or fully-visible modes.

7. Visualization

We use Grad-CAM [19] to visualize the activation maps
of MambaOut-T, as shown in Figure 2. The visualization
shows that MambaOut-T accurately locates the key parts of
the images, demonstrating the model’s effectiveness. Addi-
tionally, we observe that the activation areas are relatively
concentrated, which is characteristic of pure CNNs.
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