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1. Details on Compared Methods

We provide more implementation details of two comparison
methods, i.e., DragAnything and 3DiT.

DragAnything [4] DragAnything is a trajectory-based
video generation model that allows specifying one or more
objects, enabling the corresponding objects to move accord-
ing to the trajectory in the generated video. However, while
this method can control the positions of the generated objects
to match the coordinates in the trajectory, it cannot control
other elements, such as keeping the background stationary.
To maintain the background as much as possible, we need
to select a point in the background region and assign it a
stationary trajectory to control the relative stability of the
background. In our implementation, we strive to keep the
background stationary. Specifically, we design two trajecto-
ries. The first is the foreground trajectory, which controls the
movement of the target object. The start point is the original
center position of the object, and the end point is the center
of the target position of the object. The key points of the tra-
jectory are obtained through linear interpolation. The second
is the background trajectory, where we set the trajectories
of a background point in the background region to be sta-
tionary, thereby maintaining the stability of the background.
To automatically select a background point, we identify the
location within the background mask that is farthest from
both the foreground object and the image boundaries. This
is achieved by computing the Euclidean distance of each
background pixel to the nearest foreground pixel and the
image borders, then selecting the point with the maximum
minimum distance. Nonetheless, despite our effort, this can
still result in detail-level jitter or control failures, as shown
in the last example of Fig. 10.

* Work done during an internship at Adobe.
† Corresponding authors.

3DiT [1] 3DiT is a text-conditioned image editing method
that cannot use bounding boxes to precisely control the ob-
jects to be moved and their target positions. Instead, it
requires a textual prompt to describe the objects and the
coordinates of the target positions. To address this, we em-
ploy an image caption model to generate text labels for each
cropped object in our evaluation set, which are then used as
prompt instructions. For the target position coordinates, we
use the center points of the target bounding boxes.

2. Video Dataset Pipeline

We use an internal video dataset as the real-world video
source. Note that the dataset pipeline can be applied to
any video dataset. For processing, we utilize SAM2 [2] to
segment the videos and obtain consistent object labels across
frames. Then, we filter out objects with masks that are too
small and those that do not appear simultaneously in both
frames. Finally, we obtain approximately 800,000 image
groups, each containing two frames and the corresponding
mask image for one object.

Fig. 1 shows some sample data from the video dataset.
As mentioned, in the video dataset, other objects or back-
grounds, except for the main subject, mostly change, making
it difficult to directly use them for training movement tasks.
However, we use the video data to train on a mask-based
object insertion task. As demonstrated in Fig. 2, during the
training process, the object from frame #1 is extracted us-
ing mask #1 and serves as the object image, coupled with
a foreground-masked frame #2 as the input, to predict a
complete frame #2.

Note that our model is trained on video and CG data,
while it is evaluated on image data. Hence the training and
evaluation data are completely different with no overlap or
data leakage issues. ObjMove-A is manually captured using
DSLR while ObjMove-B is web data without ground-truth,
which theoretically prevents data leakage.
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Frame #1 Mask #1 Mask #2Frame #2

Figure 1. Video dataset samples. Frames and corresponding
masks from our video dataset, processed with the SAM2 [2] to
ensure consistent object labeling across frames.

#1: Input Image #2: Object Image #3: Instruction Map #4: Ground Truth

Predict

Mask-based Insertion on Video data

Figure 2. Mask-based insertion on video data. #1: Input image
with the object masked out. #2: Isolated object image. #3: Instruc-
tion map indicating where to place the object. #4: Ground-truth
image for prediction.

Figure 3. Interface of the additional user study. Samples from
our “find-the-real-image” game designed to assess the realism of
synthesized images. Each participant is shown a set of images and
asked to identify the original.

3. Samples of Synthetic Data

Fig. 5 shows some rendered images of different objects in
background scenes with varying camera views. We also

Input Ours

Figure 4. Illustration of representative failure cases. Rows 1 and
2 show unintended pose alterations when moving non-rigid objects
(e.g., humans), where the generated pose significantly deviates from
the original. Row 3 illustrates the disappearance of nearby objects
when one object is moved closely past another. Row 4 shows text
distortion after object movement, a common limitation inherent in
latent diffusion models.

display their corresponding clean background images where
no object is located in the region of interest. These clean
background images support our mask-free object removal
and insertion training. Fig. 6 presents examples of the full
sequence rendering. The first four rows illustrate sequences
of the same scene and object in different positions, albeit
under different lighting conditions. The last two rows dis-
play the corresponding object masks, which are directly
obtained through rendering. Notably, these masks represent
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Figure 5. Image samples of synthetic data. Display of synthetic scenes with object placements across varying camera angles.

the amodal extent of the objects without considering occlu-
sion relationships. This approach aids the model in learning
to determine whether an object should be occluded when a
mask overlaps with another object.

4. Additional User Study: Find the Real Image

We conduct an additional user study where users are asked
to find the real image among four images, of which three are
generated by our method by moving the object of interest to
different locations. The results reveal that users incorrectly
identify the real (input) image 70% of the time, demonstrat-
ing our method’s ability to generate realistic images that
effectively obscure artifacts. Samples of this game are illus-
trated in Fig. 3, and we also provide a web link here to play
the game interactively.

5. More Results

We provide additional qualitative results of our model on
in-the-wild internet images. Fig. 7, Fig. 8, and Fig. 9 re-
spectively showcase more results of our model on object
movement, removal, and insertion. For each result, we anno-
tate key aspects above the images to better demonstrate the
capabilities of our model.

6. More Comparisons

We present additional comparison results between our
method and other approaches. Fig. 10 and Fig. 11 respec-
tively show the comparison results for the movement and
removal tasks on ObjMove-B. Fig. 12 displays the insertion
results on in-the-wild image pairs. Additionally, Fig. 13,
Fig. 14, and Fig. 15 illustrate the movement, removal, and
insertion results on ObjMove-A, where a reference ground-
truth image is also provided.

7. Limitations and Future Work

While our method achieves excellent results across three
tasks—object movement, removal, and insertion—it still
possesses certain limitations. Figure 4 illustrates several
failure cases, categorized into three main scenarios:

1. Unintended Pose Alterations. Our design philosophy
emphasizes maintaining the object’s original pose as con-
sistently as possible, only automatically adjusting the
pose when necessary for harmonious integration into the
new environment. This strategy generally ensures stable
and robust performance. However, for non-rigid objects
(e.g., humans), generated results sometimes exhibit sig-
nificant and unintended pose alterations, occasionally in-
troducing new content (rows 1 and 2 in Figure 4). We sus-
pect this primarily arises from the abundance of human-
motion examples in real video datasets, which bias the
model towards pose variability. To address this, we plan
to incorporate meta-information regarding relative object-
camera poses into our synthetic dataset and conditionally
train the model based on this information. This enhance-
ment will enable explicit 3D control, allowing precise,
user-directed pose manipulation.

2. Disappearance of Nearby Objects. When an object is
moved closely past another object (row 3 in Figure 4),
the nearby object occasionally disappears. We attribute
this to a lack of examples where one object explicitly
crosses over another within our synthetic training data.
This limitation can easily be resolved by augmenting the
dataset with relevant scenarios.

3. Text Distortion. For objects containing text (row 4 in
Figure 4), moving the object often results in distorted text.
This is a common limitation in latent diffusion models
caused by insufficient reconstruction capabilities of the
VAE.

Moreover, our method exhibits relatively slow inference
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Figure 6. Full sequence examples of synthetic data. We show two sequences from our synthetic dataset with an object placed in different
locations with two lighting conditions. The last two rows present the object masks.
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Key aspects: Reflection; Perspective Key aspects: Reflection; Shadow

Key aspects: Out-of-Focus; Occlusion relation Key aspects: Complex shadow

Key aspects: Transparent material; Shadow Key aspects: Occlusion relation

Key aspects: Reflection; Perspective Key aspects: Understanding physical relation

Figure 7. Qualitative results on object movement. Key aspects to focus on are annotated above each image to highlight the model’s ability.

speed. On a single NVIDIA A100 GPU, inferring an image
with a resolution of 512×512 requires approximately 20 sec-
onds, which is slower than other U-Net-based approaches.
However, in future work, we aim to reduce the inference
cost by employing model distillation and diffusion distil-

lation techniques [3, 5, 6], thereby enhancing the practical
applicability of our approach in real-world scenarios.
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Key aspects: Complex shadow removal and completion Key aspects: Reflection

Key aspects: Shadow; Complex background completion Key aspects: Shadow

Key aspects: Long shadow Key aspects: Shadow

Key aspects: Reflection; Complex background completion Key aspects: Shadow

Figure 8. Qualitative results on object removal. Key aspects to focus on are annotated above each image to highlight the model’s ability.
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Figure 9. Qualitative results on object insertion. Key aspects to focus on are annotated above each image to highlight the model’s ability.
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Figure 10. Qualitative comparisons on object movement. Our method consistently outperforms state-of-the-art methods.
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Input 3DiTOurs LaMa SD-Inpaint PowerPaint

Figure 11. Qualitative comparisons on object removal. Our method consistently outperforms state-of-the-art methods.
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Input (object + background) Ours Anydoor Paint-by-Example

Figure 12. Qualitative comparisons on object insertion. Our method consistently outperforms state-of-the-art methods.
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Figure 13. Qualitative comparisons on object movement. Our method consistently outperforms state-of-the-art methods.
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Ground-TruthInput 3DiTOurs LaMa SD-Inpaint PowerPaint

Figure 14. Qualitative comparisons on object removal. Our method consistently outperforms state-of-the-art methods.
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Input (object + background) Ground-TruthOurs Anydoor Paint-by-Example

Figure 15. Qualitative comparisons on object insertion. Our method consistently outperforms state-of-the-art methods.
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