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In this Appendix, we will provide some supplemen-
tary materials and more experimental results for the pro-
posed Once-Tuning-Multiple-Variants (OTMV) VLM tun-
ing method beyond the tight page limitation in manuscript.

1. Analysis of why OTMYV expanded model can
approximate the original VLM

In this section, we want to provide the explanation why the
OTMV expanded VLM variants can approximate the origi-
nal naive VLM with negligible accuracy gap.

Because most typical VLM models are based on trans-
former structures, without loss of generality, we use a
transformer-based VLM as an example. For one naive
transformer block in original VLM, we can regard its output
tensor y as a nonlinear function I applied to its correspond-
ing input tensor x. By expanding the nonlinear function F’,
we can get the following form:

y=Fx=LN (Wsz+z),

2= LN { W, [Soft <V“%@‘>>T) W +x}

where Wy, W, Wi, W, W, are the weight parameters of
feed-forward layer, query, key, value, and output linear pro-
jection layers. L N7 and LN, are two separate layer normal-
ization layers. Soft and v/d refers to the softmax operation
and normalization constant in attention of the transformer
block. In the proposed OTM V-expanded VLM model struc-
ture, all the weight tensors in feed-forward layer, query,
key, value, and linear projection layers, i.e., Wy, W,, Wy,
W,,, W, are all shared among the key and high-order series
weight terms. But the OTMV coefficients and layer normal-
ization: LNy, L N5 are not shared.

From the whole model view', a naive VLM model
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IFor illustration, we do not distinguish the transformer blocks from
different modalities. Because we have the ablation study to discuss the
transformer blocks sharing strategies within or across modalities, it will
not break the analysis here.

consists with K naive transformer blocks (represented by

Fy,--- , F functions), x and y,, ;.. are input and output
tensor for this model, then it can be expressed as:
ynaive:FK"'F3F2F1x:Fx (2)

If we approximate with a OTMV-expanded VLM model
consists with one shared key (i.e., first-order) transformer
block and K — 1 high-order transformer blocks, then:

Yotmv = Clle + 62F101F1x + C3F102F161F1x + -

= Fyx + GFix + &Fx + -+ cx Ffx

3)
where x and y,,,,, are input and output tensor for the
OTM V-expanded model, ¢, ca, - - - , cx are the OTMV co-
efficients, and ¢,,--- ,ck are their combined form. By
comparing the (2) and (3) expressions, the OTM V-expanded
model tries to approximate the nonlinear function [ with the
first-order OTMYV block’s function F} and its series expan-
sion form. Based on the mathematical series expansion
theorem, the value of an arbitrary nonlinear function can be

expressed as an infinite sum of its derivative series terms.
So in theory, we can change the naive VLM model and
constructing it as the OTMV-expanded structure. And the
OTMV-expanded model is a perfect approximation of the
naive VLM model. With the same training session, it will

have a negligible accuracy gap with the naive model type.
Activation Functions. The activation functions in the
naive VLM models are parameterless, and we can express
them as the extra multiplication of the outputs from Multi-
layer Perceptron (MLP). So, the activation functions will
not influence the OTM V-expanded model’s approximation.
Layer Normalization Functions. The layer normal-
ization functions in the naive VLM models play a crucial
role by stabilizing the training process and improving model
performance. Layer normalization computes normalization
statistics across all features within a layer for each instance
independently. In the OTMV-expanded model, we share
the first-order transformer block’s weight and bias while
keeping the layer normalization in the original structure not
changed. So, it will not alter the normalization statistics



mechanism, i.e., the layer normalization functions will not
influence the OTM V-expanded model’s approximation.
Inside Attention Structures. In the naive VLM models,
there are two matrix multiplication operations among Q, K,
and V, as well as a softmax calculation inside the attention.
However, all these structures are parameterless, and the cor-
responding operations are calculated on activation tensors.
The design of the OTMYV tuning saves the memory con-
sumption of the learnable parameters, so it will not alter the
inside structures and operations for the attention part.

2. Hyper-parameters in experiments

For VLMo (Base and Large)’ [1], BLIP? [8] and BEiT-3
(Base and Large)* [12] baseline models and the OTMV-
tuned versions, we follow the hyper-parameters settings in
public repositories marked by the footnotes and detailed list
in Table 1. Multiple V100 [9] and A100 [10] GPUs are used
for data-parallel training in each training or fine-tuning ex-
periment.

3. Supplementary experiments

3.1. Comparison between OTMYV and fine-tuning

To compare the efficacy of OTMV-tuning workflow with
the traditional fine-tuning (including adaptation) paradigms,
we check the accuracy of OTMV-tuned VLM mod-
els and compare them to the models tuned by typical
parameter-efficient tuning and adaptation techniques, PET-
Adapter” [5], LoRA® [6], VL-Adapter’ [11], VL-PET® [7],
Once-for-All° [2], MatFormer [4] and Flextron [3]. The
detailed accuracy is reported in Table 2. The baseline is
the naive VLM models going through the full fine-tuning
in each downstream task. To make a fair comparison, the
VLM variants tuned with other methods in Table 2 all go
through the same fine-tuning stages to align with the base-
line setting.

From the Table 2, we can see that the accuracy of
the VLM model variants tuned by the typical parameter-
efficient tuning and adaptation techniques has some gaps
compared to the full fine-tuning baseline models. The ac-
curacy of the OTMV-tuned VLM model variants has an ac-
curacy boost over the counterparts, and the gaps with the
full fine-tuning baseline models are negligible. Moreover,

https : / / github . com / microsoft / unilm / tree /
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4https : / / github . com / microsoft / unilm / tree /
master/beit3
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8https://github.com/HenryHZY/VL-PET
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the VLM model variants tuned in the all-in-one fine-tuning
paradigms also have an apparent accuracy gap compared
to the other parameter-efficient tuning paradigms. The po-
tential reason is that Once-for-All, MatFormer, and Flex-
tron are designed for CNN and pure large language models
rather than explicitly designed for VLM model structures.

The typical parameter-efficient tuning and adaptation
techniques freeze most of the pre-trained parameters and
only tune the limited learnable parameters in the adapters
so that the tuning cost can be significantly reduced, such
as PET-Adapter, LoRA, VL-Adapter, and VL-PET tuning
paradigms. The focus of all-in-one fine-tuning paradigms
is unifying the tuning of the elastic model structures and
parameters in one process. So, the tuning cost is reduced
from the number of tasks multiplied by the single full fine-
tuning cost in each task. However, this unifying is @ non-
trivial effort to maintain the accuracy for multiple elas-
tic model structures; a longer tuning process than the sin-
gle full fine-tuning cost in a single task is expected for ac-
curacy compensation. That explains why the tuning costs
from Once-for-All, MatFormer, and Flextron are more sig-
nificant than the baseline cost. The proposed OTMYV tuning
method does not change the naive full fine-tuning process.
The only overhead comes from the extra learnable OTMV
coefficients, which is tiny as the coefficients are all scaler
variables. So, the tuning cost from OTMYV is in the 1.01-
1.02x range against the baseline cost.

3.2. Ablation of OTMY skip probabilities

To measure the accuracy influence of different OTMV gate
skip probabilities and the dynamic expansion capabilities,
we make an ablation study in this section. We choose the
OTMV-tuned BEiT-3 (Large) as the target model and evalu-
ate the accuracy of OTMYV dynamic expanded variants with
different OTMV gate skip probabilities. Figure 1 shows the
ablation comparison for the visual question answering task
on VQA v2.0, and Figure 2 shows the ablation comparison
for the image caption task on COCO.

From the results shown in Figures | and 2, if the OTMV
gate skip probability has a minimal value (e.g., 0.01), the
dynamic expansion capabilities of the OTMV-tuned VLM
will be apparently injured. The accuracy drops significantly,
especially for the expanded variants with small model pa-
rameter sizes. If the OTMV gate skip probability has a rel-
atively large value (e.g., 0.2), the dynamic expansion ca-
pabilities of the OTMV-tuned VLM will not be harmed.
However, the accuracy of the OTMV-expanded VLM vari-
ants with larger model parameter sizes has a slight drop.
The skip probability between 0.05 and 0.1 provides a better
balance between the acceptable accuracy degradation and
the dynamic expansion capability for the OTM V-expanded
VLM variants.


https://github.com/microsoft/unilm/tree/master/vlmo
https://github.com/microsoft/unilm/tree/master/vlmo
https://github.com/salesforce/BLIP
https://github.com/microsoft/unilm/tree/master/beit3
https://github.com/microsoft/unilm/tree/master/beit3
https://github.com/google-research/adapter-bert
https://github.com/google-research/adapter-bert
https://github.com/microsoft/LoRA
https://github.com/ylsung/VL_adapter
https://github.com/HenryHZY/VL-PET
https://github.com/mit-han-lab/once-for-all

Models Task Datasets Optimizer Initial LR Weight Decay Epochs Batch Size GPU Num

Visual Question Answering VQA v2.0 AdamW 3e-5 0.01 10 128 8
VLMo (Base) Visual Reasoning NLVR2 AdamW Se-5 0.01 10 128 8
Image-Text Retrieval COCO AdamW 3e-5 0.01 50 3072 8
Image-Text Retrieval Flickr30k  AdamW 3e-5 0.01 50 3072 8
Visual Question Answering VQA v2.0 AdamW 1.5e-5 0.01 10 128 8
VLMo (Large) Visual Reasoning NLVR2 AdamW 3e-5 0.01 10 128 8
Image-Text Retrieval COCO AdamW 2e-5 0.01 50 3072 8
Image-Text Retrieval Flickr30k  AdamW 2e-5 0.01 50 3072 8
Visual Question Answering VQA v2.0 AdamW 2e-5 0.05 10 256 16
Visual Reasoning NLVR2 AdamW 3e-5 0.05 10 256 16
BLIP Image-Text Retrieval COCO AdamW le-5 0.05 6 256 8
Image-Text Retrieval Flickr30k  AdamW le-5 0.05 6 256 8
Image Captioning COoCoO AdamW le-5 0.05 5 256 8
Visual Question Answering VQA v2.0 AdamW 3e-5 0.01 10 128 8
Visual Reasoning NLVR2 AdamW Se-4 0.2 20 256 8
BEIT-3 (Base) Image-Text Retrieval COCO AdamW 2e-4 0.05 15 3072 16
Image-Text Retrieval Flickr30k  AdamW le-4 0.05 20 3072 16
Image Captioning COCO AdamW 4e-5 0.05 10 256 8
Visual Question Answering VQA v2.0 AdamW 2e-5 0.01 10 128 8
Visual Reasoning NLVR2 AdamW le-4 0.2 20 256 8
BEIiT-3 (Large) Image-Text Retrieval COCO AdamW Se-5 0.05 15 3072 32
Image-Text Retrieval Flickr30k  AdamW Se-5 0.05 20 3072 32
Image Captioning COCO AdamW 8e-6 0.05 10 256 8
Table 1. Experiments hyper-parameters for the vision-language models fine-tuned and tested in this paper.
. . Tasks Visual Question Answerin; Visual Reasonin, Image Captionin;
Models gqh;‘(;:lgs (T:‘(‘)'s‘:“g Datasets VQA v2.0 ¢ NLVR2 ¢ g cogo ’
Metrics  test-dev (%) test-std (%) dev (%) test-P (%) BLEU@4 CIDEr
Full Fine-tuning (Baseline) 1x 78.25 78.32 82.15 82.24 39.70 133.30
PET-Adapter tuning 0.30x 77.65 (-0.60)  77.69 (-0.63)  79.95 (-2.20)  80.01 (-2.13)  39.11 (-0.59)  131.93 (-1.37)
LoRA tuning 0.18x% 77.61 (-0.64)  77.66 (-0.66)  79.89 (-2.26)  79.98 (-2.16)  39.07 (-0.63)  131.81 (-1.49)
VL-Adapter tuning 0.20% 78.17 (-0.08)  78.21 (-0.11)  80.27 (-1.88)  80.34 (-1.90)  39.32 (-0.38)  132.12 (-1.18)
BLIP VL-PET tuning 0.19x 78.02 (-0.23) 78.10(-0.22) 81.06 (-1.09) 81.17 (-1.07)  39.46 (-0.24)  132.85 (-0.45)
Once-for-All tuning 1.95x% 7713 (-1.12)  77.20(-1.12) ~ 79.79 (-2.36)  79.89 (-2.24)  39.03 (-0.67)  131.75 (-1.55)
MatFormer tuning 2.56% 77.32(-0.93) 77.31(-1.01)  79.87 (-2.28) 79.96 (-2.17)  39.06 (-0.64)  131.82 (-1.48)
Flextron tuning 1.76x 77.34 (-0.91) 77.33(-0.99)  79.93 (-2.22)  79.99 (-2.14)  39.08 (-0.62)  131.86 (-1.44)
OTMYV tuning 1.01x 78.19 (-0.06) 78.27 (-0.05)  82.03 (-0.12) 82.17 (-0.07)  39.61 (-0.09)  133.32 (+0.02)
Full Fine-tuning (Baseline) 1x 78.45 78.52 84.61 85.28 39.35 133.60
PET-Adapter tuning 0.26x 76.79 (-1.66)  77.00 (-1.52)  83.59 (-1.02) 84.29 (-0.99)  38.86 (-0.49)  132.88 (-0.72)
LoRA tuning 0.16% 76.78 (-1.67)  77.01 (-1.51)  83.61 (-1.00) 84.30 (-0.98)  38.88 (-0.47)  132.86 (-0.74)
VL-Adapter tuning 0.18x 77.14 (-131) 7720 (-132) 84.06(-0.55) 84.74(-0.54) 39.18 (-0.17)  133.11 (-0.49)
BEIT-3 (Base) VL-PET tuning 0.17x 77.60 (-0.85) 77.50 (-1.02)  84.32(-0.29) 84.94 (-0.34)  39.27 (-0.08)  133.30 (-0.30)
Once-for-All tuning 1.88x 76.45 (-2.00) 76.83 (-1.69) 83.22(-1.39) 84.04 (-1.24) 38.52(-0.83) 132.57 (-1.03)
MatFormer tuning 2.59% 76.57 (-1.88)  76.90 (-1.62)  83.33 (-1.28) 84.17 (-1.11)  38.68 (-0.67)  132.77 (-0.83)
Flextron tuning 1.68x 76.69 (-1.76) 76.99 (-1.53) 83.45(-1.16) 84.26(-1.02) 38.73(-0.62) 132.82(-0.78)
OTMYV tuning 1.02x 7832 (-0.13) 78.41(-0.11) 84.53 (-0.08) 85.22 (-0.06) 39.31 (-0.04) 133.49 (-0.11)
Fine-tuning (Baseline) 1x 82.53 82.58 89.22 89.95 41.46 143.29
PET-Adapter tuning 0.29x 80.99 (-1.54) 81.04 (-1.54) 88.19(-1.03) 88.85(-1.10)  40.86 (-0.60)  142.02 (-1.27)
LoRA tuning 0.17x 80.97 (-1.56) 81.03 (-1.55) 88.21(-1.01) 88.91(-1.04) 40.83 (-0.63)  141.99 (-1.30)
VL-Adapter tuning 0.20x 81.35(-1.18) 81.41(-1.17)  88.64 (-0.58) 89.38 (-0.57) 41.24 (-0.22)  142.79 (-0.50)
BEIT-3 (Large) VL-PET tuning 0.19% 81.64 (-0.89) 81.52(-1.06) 88.91(-0.31) 89.58(-0.37)  41.37 (-0.09)  142.95 (-0.34)
Once-for-All tuning 1.92x 80.61 (-1.92)  80.75 (-1.83)  88.01 (-1.21) 88.66 (-1.29)  40.71 (-0.75)  141.82 (-1.47)
MatFormer tuning 2.63x 80.84 (-1.69) 80.92 (-1.66)  88.11 (-1.11) 88.77 (-1.18)  40.77 (-0.69)  141.95 (-1.34)
Flextron tuning 1.72x 80.90 (-1.63) 80.96 (-1.62)  88.15(-1.07) 88.80(-1.15) 40.80 (-0.66)  141.97 (-1.32)
OTMYV tuning 1.02x 82.50 (-0.03) 82.59 (+0.01) 89.19 (-0.03) 89.96 (+0.01) 41.49 (+0.03) 143.30 (+0.01)

Table 2. Comparison among the naive VLM models with variants tuned by traditional fine-tuning, adaptation, and proposed OTMV
methods to check their corresponding efficacy and tunning costs. (All values are averaged with 3 runs. Variances: 0.07)



Tasks Visual Question Answering

OTMV

Visual Reasoning Image-Text Retrieval

Models Coefficients Datasets VQA v2.0 NLVR2 COCO Flickr30k
Metrics  test-dev (%) test-std (%) dev (%) test-P (%) I-TR (%) T-IR(%) I-TR(%) T-IR (%)
VLMo (Base)  Fivedas! 7626 (-0.27) 7650 (-0.31) 82.48 (-0.24) 83.03 (-026) 74.6(-02) 56.6(-0.4) 92.2(-0.1) 79.0(-0.3)
Learnable 76.53 76.81 82.72 83.29 74.8 57.0 923 792
Fixed as 1 7933 (:0.59) 79.38 (-0.61) 85.11(-0.55) 86.25(-0.58) 77.9(-04) 59.9(-0.7) 95.1(-0.3) 84.1(-0.5)
VLMo (Large) ;. nable 79.92 79.99 85.66 86.83 78.3 60.6 95.4 84.6
BLIP Fived as | 77.87 (:0.32) 77.92(-0.35) 81.77(-026) 81.88(-0.29) 80.9(-0.2) 63.7(-0.3) 97.0(-02) 87.2(-0.2)
Learnable 78.19 78.27 82.03 82.17 81.1 64.0 972 87.4
BEIT:3 (Base)  Fivedas ] 78.02 (-0.30) 78.08 (-0.33) 84.30 (-0.23) 84.95(-027) 78.8(-02) 60.8(-0.4) 96.0(-0.2) 859 (-0.2)
Learnable 7832 78.41 84.53 85.22 79.0 612 96.2 86.1
BEIT:3 (Largey P45 1 81.87 (-0.63) 81.93 (-0.66) 88.62(-0.57) 89.38(-0.58) 81.6(-0.5) 62.8(-0.6) 96.9(-0.4) 87.8(-0.3)
8¢ Learnable 82.50 82.59 89.19 89.96 82.1 63.4 97.3 88.1

Table 3. Comparison between using the learnable OTMV coefficients and fixing OTMYV coefficients as 1.
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Figure 1. Ablation comparison of the OTMV gate skip probabil-
ities with OTMV tuned BEiT-3 Large variants on visual question
answering task (VQA v2.0 dataset).
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Figure 2. Ablation comparison of the OTMV gate skip probabili-
ties with OTMV tuned BEiT-3 Large variants on image captioning
task (COCO dataset).

3.3. Ablation of the influence from learnable or fixed
OTMY coefficients

To measure the influence of learnable OTMV coefficients
on accuracy, we conducted an ablation study to determine
whether to use the learnable OTMYV coefficients or fix the
value of OTMYV coefficients as one. The comparison results
are shown in Table 3.

From the accuracy results in Table 3, the learnable
OTMV coefficients show an obvious advantage against the
fixed coefficients in various visual-language tasks, proving
its accuracy contribution to the overall OTMV tuning work-
load.

3.4. Key weights merge strategies for feed forward

In the manuscript, we apply the elementwise mean to
merge the key weight tensors of Feed Forward layers in
the first transformer block in the vision modality backcone:
WY - Mod and the counterpart in the language modality

FF(1)
backbone: WPQ;(MI)OCI

key tensor, refer as W,

into a unified cross-vision-language

VL—Mod
9FF(1)

_ V—Mod yirL—Mod

= Meang (WFF(l) 7WFF(1) ) @
We can also merge these two key tensors in other strate-

gies. For example, we can merge them with weighted sum

form, refer as the weighted sum merging strategy:

VL—Mod V—Mod
Wing rr() “=a Wer) + 5

where «, § are the adjustment factors.
Another example is merging the two key tensors with
least mean square error (MSE), refer as MSE merging strat-
V —Mod

egy:
VL—Mod)?
FF(1) mgFF(1) ) *(W

(W — W,
min
2
®

We also make a quick ablation to compare with these
three merging strategies'’. For the feed-forward layers, the

VL—-Mod
Wingpr()

L—Mod
WFF(I)

&)

L—Mod

VL—Mod)?
FF(1)

MY FF(1)

10For the weighted sum merging strategy, we choose several different
group values for the adjustment factors o and 3.



Methods Tasks Visual Question Answering Visual Reasoning Image Captioning
Datasets VQA v2.0 NLVR2 CcCOoCo

Full Fine-tuning (Baseline) 1x 1x
PET-Adapter tuning 0.64x 0.66x 0.63x
LoRA tuning 1x 1x
VL-Adapter tuning 0.69x 0.72x 0.67x
VL-PET tuning 0.60x 0.61x 0.59x
Once-for-All tuning 1.27x 1.30x 1.24x
MatFormer tuning 1.14x 1.17x 1.13x
Flextron tuning 1.25x 1.26x 1.22x
EfficientVLM Compression 1.47x 1.49x 1.45x
DistilVLM Compression 1.16x 1.18x 1.14x
UPop Compression 1.21x 1.23x 1.20x
OTMYV tuning 1.63x 1.65x 1.60x

Table 4. Comparison among the naive BEiT-3 Large model with variants tuned by traditional fine-tuning, adaptation, and proposed OTMV
methods to check deployment performance on NVIDIA A100 GPU. For visual question answering task, the performance is measured with
the batch size fixed to 16. For visual reasoning and image captioning tasks, the performance is measured with the batch size fixed to 32.

unified cross-vision-language key tensor shared with three
merging strategies make marginal differences in the final
accuracy metrics on various benchmarks. For example, the
gap of the VQA scores on the VQA v2.0 dataset from these
three merging strategies is only 0.15. This phenomenon also
support the hypothesis in the manuscript. While the Feed
Forward layers are responsible for the nonlinear transfor-
mations of the attention outputs, and are not directly re-
lated to the alignment of the different modalities. So they
will not cause apparent accuracy differences when sharing
across modalities with different merging strategies.

With this experiment result, from the accuracy perspec-
tive, we can also share the key weight tensors for the Feed
Forward layers within the vision and language modalities,
respectively. However, sharing across modalities leads to
the minor physical memory cost for saving the key weight
tensors of the Feed Forward layers. So, from the perfor-
mance perspective, sharing across modalities is preferred
to sharing within the same modality.

3.5. Deployment of OTMV-tuned VLM variants

Because the OTMV-tuned VLM variants use the OTMV
gates to skip the weight layers in the inference process, there
is no reliance on the specific software stack support for
actual deployment. With the real saving of the VLM mod-
els” memory cost on hardware, it can bring a considerable
performance boost. For example, the OTMV-tuned BEiT-3
Large variant with 60% parameters saving can have a 63%
performance improvement on the A100 GPU.

In contrast, deploying compact variants obtained by tra-
ditional model compression techniques may rely on special
support from the software stack. For example, the com-
pressed sparse VLM variants require the sparse calculation

kernels to run efficiently. The quantized VLM variants re-
quire specific quantized kernels and the extra handling of
quantized scale factors to deploy the VLM model with the
correct outputs.

We measure the deployment performance among the
naive BEiT-3 Large model with variants tuned by traditional
fine-tuning, adaptation, and proposed OTMV methods on
NVIDIA A100 GPU [10]. The comparison results on vi-
sual question answering, visual reasoning, and image cap-
tioning tasks are shown in Table 4.

From the Table 4, we can see that the deployment per-
formance of the BEiT-3 Large model variants tuned by
the typical parameter-efficient tuning and adaptation tech-
niques is usually worse than the full fine-tuning baseline
model. The performance regression comes from the over-
head of inserting the additional adapters in the original
model structures. LoRA fuses the low-rank adapter pa-
rameters with the original pre-trained parameters, so there
is no extra deployment performance overhead. The BEiT-
3 Large model variants tuned in the all-in-one fine-tuning
paradigms have an apparent performance boost compared
to the other parameter-efficient tuning paradigms as well as
the full fine-tuning baseline model. The performance boost
mainly comes from the benefit of elastic structures designed
with all-in-one fine-tuning paradigms. Compared to the full
fine-tuning baseline model, the BEiT-3 Large model vari-
ants tuned in the compression techniques also have an ap-
parent performance boost. The performance boost mainly
comes from the benefit of reduced parameters or FLOPs
saving by model compression paradigms. The OTMV-
tuned BEiT-3 Large model has an apparent deployment per-
formance boost, which is superior to prior arts.



4. Limitations

We acknowledge the potential limitations of our study and
the need for continuous improvement. While the dynamic
expansion capacity of OTMV-tuned models is promising,
it may require further validation when meeting the new-
emerging tasks and datasets. We encourage the research
community to extend our work, contributing to developing
more efficient VLMs in various industrial applications.

5. Ethical considerations and statement

Our research was conducted with a commitment to ethical
standards and considerations, ensuring that all aspects of the
study were performed responsibly and with respect for the
broader impacts on society and the environment.

Data Privacy and Security: All data used in this study
were sourced from publicly available datasets, ensuring
compliance with data privacy regulations and ethical guide-
lines. No personally identifiable information was used, and
all data handling processes adhered to strict confidential-
ity and security protocols to prevent unauthorized access or
misuse.

Environmental Impact: Training large-scale VLMs
can be resource-intensive and have a significant ecolog-
ical footprint. Efforts were made to optimize computa-
tional resources and reduce energy consumption wherever
possible. The proposed Once-Tuning-Multiple-Variants
(OTMYV) paradigm is designed to be more efficient, reduc-
ing the need for multiple training runs and thereby lowering
the overall carbon footprint.
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