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Supplementary Material

In this appendix, we provide the full derivations for the
mathematical results presented in the main paper and addi-
tional (especially qualitative) experimental results.

A. Derivations
In this section, we provide the derivations deferred from
the main paper. We formulate the problem in more gen-
eral terms—as a weighted path length—before returning to
the specifics used in the main paper.

Equation for path length. Let � : [a, b] ! Rn be a path
such that �(a) = xa and �(b) = xb, and S : {�i} ! R be
the action functional on the set of such paths, defined by

S[�] =

Z b

a
L(t, �(t), �̇(t)) dt, (15)

where L is the Lagrangian given by

L(t, �(t), �̇(t)) = k�̇(t)kw(�(t)). (16)

L(t, �(t), �̇(t)) =
p
h�̇(t), �̇(t)iK(�(t)) (17)

K(�(t)) = w(�(t))2I. (18)

Then S[�] is the weighted path length for path �.

Euler–Lagrange equations. Given this definition, a path �
is a stationary point of S iff it satisfies the Euler–Lagrange
equations, viz.,
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where @L
@� stacks the partial derivatives w.r.t. the compo-

nents of � and @L
@�̇ stacks the partial derivatives w.r.t. the

components of �̇. We obtain
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Multiplying both sides by k�̇k/w, we obtain
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= k�̇k2r logw �
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where we use that r logw = 1
w

dw
d� . Rearranging, we obtain
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where the unit velocity is given by ˆ̇� = �̇/k�̇k. In other
words, we obtain a relationship between quantities that are
both perpendicular to the velocity, one a component of the
scaled acceleration and the other a component of the gradi-
ent of the log weight.

For a constant speed parameterization, we observe that
acceleration in the direction of the path must be zero, and
so (I � ˆ̇� ˆ̇�T)�̈ = �̈. We therefore obtain

�̈ = k�̇k2
⇣
I � ˆ̇� ˆ̇�T

⌘
r logw(�). (28)

Functional derivative. This second-order ODE expresses
the relationship at optimality, i.e., given an initial position
and velocity we can obtain the associated optimal path.
However, we can also derive the functional derivative �S

��
of the path length functional S by approximating the curve
by a polygonal line with n segments, as n grows arbitrarily
large. We obtain, for any (potentially sub-optimal) path �,
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or, for a constant speed parameterization,
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High-probability geodesics. In our case of interest, the
weight is inversely proportional to the probability density,
that is,

w(�) = p(�)�1 and r logw(�) = �r log p(�), (31)

giving us, for a constant speed parameterization of the path,
the following second-order ODE expressing the optimality
condition
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and the functional derivative
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B. Further Implementation Details
For the score function � in Eq. (12), we use a uniform
weight function w(⌧) = 1, and the output is normalized by
1 + �. For the negative text prompt, we used “A doubling
image, unrealistic, artifacts, distortions, unnatural blend-
ing, ghosting effects, overlapping edges, harsh transitions,
motion blur, poor resolution, low detail” for all the exper-
iments. In the inference process of image interpolation,
we applied the same perceptually-uniform sampling strat-
egy as Zhang et al. [53] to produce an image sequence with
a more homogeneous transition rate, using histogram equal-
ization. In both the deterministic DDIM forward (DDIM-F)
and backward (DDIM-B) processes on BVP and IVP, we
set the classifier-free guidance scale (CFG) to 1 and use the
same positive conditional embedding as the one used in �
(text-inverted). After optimizing each point x in the path,
we project the point back to the sphere by scaling the norm
of x to the radius of the sphere. For IVP, we aim to gen-
erate an initial velocity that points towards the distribution
of the target prompt. Given a source and target text embed-
ding z0 and z1, we compute a pseudo target xtgt by opti-
mizing the initial latent vector x0 using the score function
�(x|mz1 + (1�m)z0, ⌧) with m = 0.8, learning rate as 1
and number of iteration as 300. Then the initial velocity is
set as xtgt � x0 projected to the tangent space of the sphere.

C. Further Details on Evaluation Metrics
For the TOPIQ score, we weight it to emphasize the quality
of the middle frames of the generated sequence, as they tend
to be farther from the source images and more indicative of
the overall perceptual quality. Instead of a simple average,
we compute a weighted TOPIQ score as:

TOPIQ({I�}�2[0,1]) =

P
� w(�)TOPIQ(I�)P

� w(�)
, (34)

where w(�) = � for � <= 0.5 and w(�) = 1 � � for
� > 0.5.

D. Additional Ablation Study on the Condi-
tioning Signal

We compare two types of conditioning signals—constant
versus linearly varying along the path as discussed in
Sec. 4.1. For constant conditioning, the text embedding is
initialized as p0 + p1 and then fine-tuned using text inver-
sion. For time-linear conditioning, we apply text inversion
separately to both prompts of the image pair and interpolate

Table 3. Ablation study on the validation dataset that ablates the
time-dependence of the conditioning signal (zt) and the geodesic
optimization.

zt Opt. FID# PPL# PDV# TOPIQ"

45.30 0.853 0.037 0.516
X 55.80 0.931 0.020 0.541

X 49.39 0.917 0.035 0.526
X X 63.28 1.000 0.017 0.553

their embeddings as zt = (1 � t)z0 + tz1, where we use
the shorthand zt = ⇣(t) in this section. As shown in Tab. 3,
constant conditioning results in a distribution closer to the
input images (as measured by FID), while the time-linear
conditioning yields higher image quality (TOPIQ) and a
more homogeneous transition rate (PDV). The main paper
reports results using time-linear conditioning (see Tab. 1).

E. Sensitivity Analysis of the Hyperparameters
We analyze several key hyperparameters of our method,
as illustrated in Fig. 8. The parameter � controls the
trade-off between path directness and alignment with high-
probability regions. A larger � encourages the path to move
toward regions of higher probability density at the expense
of directness, while a smaller � keeps the path more direct.
The diffusion timestep ⌧ influences the level of detail in
the generated images. A higher ⌧ tends to morph the high-
level image features but may result in a loss of fine details,
whereas a very low ⌧ can degrade image quality due to in-
sufficient denoising. A properly chosen sampling range �⌧
can help the path escape local minima compared to using a
zero range. However, if �⌧ is too large, the guidance sig-
nal gets weaker, resulting in smoother paths but lower FID
and TOPIQ scores. These parameters exhibit interpretable
behavior, allowing users to make choices based on their spe-
cific needs.

F. Further Qualitative Results
In this section, we present additional qualitative results and
failure cases, as shown in Figs. 9 to 16.
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Figure 8. The quantitative analysis of selecting hyperparameters �, ⌧,�⌧ . The default settings are � = 0.002, ⌧ = 0.6,�⌧ = 100, which
are marked in the plots as squares.
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Figure 9. Qualitative image interpolation results, comparing all methods.
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Figure 10. Qualitative image interpolation results, comparing all methods.
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Figure 11. Qualitative image interpolation results, comparing all methods.
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Figure 12. Qualitative image interpolation results, comparing all methods.
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Figure 13. Qualitative image interpolation results, comparing all methods.
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Figure 14. Qualitative image interpolation results, comparing all methods.



Figure 15. Image interpolation failure cases. Here we show examples with a significant appearance or semantic gap between the image
pairs, where the computed geodesic is unable to smoothly connect the two.

Figure 16. Image interpolation failure cases. Here we show how smoothness in image space does not necessarily correspond to smoothness
in the projected 3D world. For example, in the top row we see a shadow boundary become a ridge line, and in the bottom row we see a
mountain become a roof line.


