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Supplementary Material

A. Additional Details on Experimental Setup

Generating 2D-3D-S [2] image pairs: As mentioned
in Sec. 5.1 in the main paper, we hereby provide the details
of how the 1064 image pairs from the Stanford 2D-3D-S [2]
panoramic dataset are generated.

The dataset includes panoramic scans captured in differ-
ent rooms across 7 different areas. We generate 4 image
pairs from each pair of panoramas captured in a same room
by:
• First, generate a random roll (±30→), pitch (±30→), yaw

(±180→), and FOV (60→- 105→, effectively a random focal
length);

• Then, project the first image using the generated roll,
pitch, yaw, and FOV using equirectangular projection,
and crop the image to a randomly chosen crop size among
1080x540, 960x540, 1024x768, 640x480 (WxH);

• Next, sample a random pixel within the middle
(W/2, H/2) of the first image (thus ensuring reasonable
covisibility), and lift-project it into the second panorama
using the ground truth depth;

• Finally, project the second image using equirectangular
projection by centering on this projected point, with again
a random roll (±30→), a random FOV (60→- 105→), and a
random crop size.

Among all generated image pairs, we randomly sample
a maximum of 152 image pairs per each of the 7 areas,
resulting in a total of 1064 image pairs.

Hyperparameters: The RANSAC thresholds are tuned
for best performance for our method as well as the baselines
on each dataset. The reprojection error threshold ωr for our
method is set to 8px for ScanNet [15] images (resized to
640x480) and ETH3D [59] images (resized to 720x480),
and 16px for MegaDepth [38] and Stanford 2D-3D-S [2]
sampled images. The Sampson error threshold ωs for our
method is set to 2px on ScanNet and 1px on other datasets.
The epipolar error threshold for the PoseLib [33] baselines
is set to 1px on ETH3D and 2px on other datasets. The
threshold of GC-RANSAC [3] for the solvers from [17] is
set to 0.75px uniformally.

As mentioned in the main paper, we empirically fix
the Sampson error weight εs to 1.0 in our experiments to
demonstrate the effectiveness of the proposed hybrid esti-
mation. This however can be tunable to adjust to different
reliability of the depth priors and feature matchers on differ-
ent dataset to make the estimator focus more on the depth-
augmented correspondences or pure point correspondences.

Task Method /
MD Model

Med. Err. ↑ Pose Err. AUC (%) ↓
ωR(→) ωt(

→) ωf (%) @5→ @10→ @20→

ScanNet-1500
Calibrated

PoseLib-5pt 2.08 5.44 - 19.48 38.09 56.08

Omnidata 1.76 5.42 - 21.24 39.74 57.75
Marigold 1.72 5.28 - 21.18 40.38 58.13
DA-met. 1.68 4.97 - 22.41 42.18 59.96

DAv2 (inv) 1.90 5.72 - 19.60 38.10 56.18
DAv2-met. 1.72 5.25 - 21.90 41.01 59.16

MoGe 1.57 4.77 - 23.36 43.39 61.08

GT Depth 1.54 4.57 - 25.03 45.06 61.85

ETH3D
Shared-focal

PoseLib-6pt 0.90 1.81 8.79 46.29 56.79 65.43

Omnidata 1.09 2.42 9.78 41.90 54.75 65.38
Marigold 0.94 1.79 8.06 45.55 58.91 68.71
DA-met. 1.06 2.37 10.47 41.81 53.33 62.94

DAv2 (inv) 1.26 2.84 9.85 38.50 52.74 64.85
DAv2-met. 0.86 1.78 7.71 47.60 59.60 69.41

GT Depth 0.36 0.81 2.07 62.26 70.52 75.90

MegaDepth-1500
Two-focal

PoseLib-7pt 1.97 5.72 23.64 21.23 36.80 54.89

Omnidata 1.53 5.41 18.60 22.67 39.94 59.15
Marigold 2.03 6.72 23.61 18.56 34.01 53.46
DA-met. 1.25 4.81 15.99 25.70 42.90 61.79

DAv2 (inv) 1.62 5.69 18.93 21.50 38.46 57.04
DAv2-met. 2.06 7.45 24.53 18.05 32.44 50.33

GT Depth 0.48 3.32 6.43 38.04 54.85 70.08

Table 8. Results with different MDE models on three tasks on
three different datasets. All results are with SP+LG matches. Best
results among the different models on each task are bolded, and
second best underlined.

B. Additional Experiment Results

Results with different monocular depth models: Our
method is designed to work with any off-the-shelf MDE
models, with Depth-Anything variants [74, 75] and MoGe
[69] giving the best results. The accuracy can further benefit
from developments on more accurate MDE models.

We include here a comparison of using different monoc-
ular depth estimation (MDE) models with our method
across three tasks and three datasets in Tab. 8. Our method
can improve upon the baseline with both metric depth
priors (Depth-Anything v1 [74] and v2 [75] metric models)
and non-metric relative depth priors (Omnidata [31],
Marigold [32], MoGe [69]). MoGe is only evaluated in
the calibrated setting due to its ability to also produce a
good estimation of focal lengths, and can therefore directly
benefit from using the more accurate calibrated estimation
in the uncalibrated cases. We include a row using the
GT Depth as the “depth priors” for each task to show the
potential of our method with potentially more advanced
monocular depth models especially for the shared-focal and
two-focal settings. It is worth noting that, while disparity
priors in general do not align with our affine-invariant
relative depth formulation and inverting those would break



Method MD Model Med. Err. ↑ Pose Error AUC (%) ↓
ωR(→) ωt(→) @5→ @10→ @20→

From [4]

2PT+D & 4PT+D DA-met. 5.31 17.65 6.42 16.32 29.90
2PT+D & 4PT+D MoGe 4.10 14.43 8.53 20.03 34.47

2PT+D & 5pt DA-met. 1.90 5.67 20.62 38.45 54.94
2PT+D & 5pt MoGe 1.88 5.66 20.74 38.53 54.98

Sim. P3P & 5pt DA-met. 1.87 5.64 20.92 38.48 54.63
Sim. P3P & 5pt MoGe 1.90 5.76 20.59 38.20 54.43

Ours Ours-calib DA-met. 1.68 4.97 22.41 42.18 59.96
Ours-calib MoGe 1.57 4.77 23.36 43.39 61.08

Table 9. Comparison with scale-only solvers from [4] with cali-
brated cameras on ScanNet-1500.

Method MD Model Med. Err. ↑ Pose Error AUC (%) ↓
ωR(→) ωt(

→) @5→ @10→ @20→

From [4]

2PT+D & 4PT+D DA-met. 6.84 25.54 8.89 16.64 26.96
2PT+D & 4PT+D MoGe 3.54 14.56 13.72 23.74 36.20

2PT+D & 5pt DA-met. 0.52 1.37 57.83 72.85 83.73
2PT+D & 5pt MoGe 0.54 1.44 55.86 70.97 82.20

Sim.P3P & 5pt DA-met. 0.49 1.34 58.23 72.97 83.68
Sim.P3P & 5pt MoGe 0.57 1.52 55.99 71.14 82.26

Ours Ours-calib DA-met. 0.47 1.26 59.80 74.77 85.47
Ours-calib MoGe 0.41 1.16 63.48 77.79 87.18

Table 10. Comparison with scale-only solvers from [4] with cali-
brated cameras on MegaDepth-1500.

the affine-invariance of disparity values, we find that on
outdoor images inverting the Depth-Anything-v2 [75]
disparities could lead to better results than its metric depth
sibling. We postulate that this is due to the disparity being
able to encode a larger range of depths within the output
range of the model, which is beneficial for outdoor scenes.

Additional comparison with solvers from [4]: The
solvers proposed in [4] considers monocular depth priors
in solving relative poses, thus they are highly related to
our work. However, their modeling only considers the
scale of the depth priors without the shift. We compare
our method with the three minimal solver & non-minimal
solver configurations mentioned in [4]: 2PT+D & 4PT+D,
2PT+D & 5pt, and Simulated P3P & 5pt. We use the
implementations obtained from the author and plug them
in the GC-RANSAC [3] framework. The results of the
best performing 2PT+D & 5pt combination are reported
in Tab. 1 and Tab. 2. The full comparison results (with
calibrated cameras, SP+LG matches) are shown in Tab. 9
and Tab. 10. Our method consistently outperforms the
scale-only methods from [4]. In addition, as we mentioned
in Sec. 2, we find that the 2PT+D solver suffers from
degeneration of using only 2 correspondences due to rank
deficiency.

Additional visual results: We provide more visualization
examples in addition to Fig. 4. In Fig. 7 and Fig. 8 we show
examples on ETH3D [59] with the shared-focal setting, and
on 2D-3D-S [2] images with the two-focal setting. By in-
corporating monocular depth priors, our method is able to

find more accurate pose together with scale and shifts of the
depth priors that lead to better and more correct alignment
of the back-projected point clouds. In Fig. 9 we show ex-
amples on ScanNet [15] comparing to the scale-only ablated
baseline as described in Sec. 5.3. Only modeling scale with-
out the shift can lead to failure cases with incorrect align-
ment and distortion visible in the aligned point clouds.

C. Additional Discussion on Proposed Solvers

In Sec. 4.1 we mentioned the proposed calibrated solver is
minimal with 3 point correspondences and related depth
priors while the shared-focal and two-focal solvers are
non-minimal. We provide in this section a simple reasoning
of the minimality of the calibrated solver, and discuss
about possible minimal versions for the shared-focal and
two-focal solvers.

Minimality of Calibrated Solver: The calibrated solver
takes 3 point correspondences and depth priors to solve
for the relative pose R, t, depth scale ϑ and shifts ϖ1,ϖ2.
Conventionally, relative pose are solved by finding the
essential matrix which has 5 degrees-of-freedom (DOFs)
up to an unknown scale. In our setup, however, because the
solved relative pose (translation) has a fixed scale consistent
with the solved depth scale and shifts, the relative pose now
has 6 DOFs. In total the problem has 6 + 1 + 2 = 9 DOFs,
and is minimally solvable with 3 point correspondences
and depth priors since each pair of 2D correspondences
gives 1 epipolar constraint, and with depth priors we can
additionally have 2 projection constraints per pair.

Shared-focal and Two-focal Solvers: For the two solvers
that we propose for uncalibrated cases, the problem is not
minimal and our solvers ignore 1 or 2 of the 6 constraints we
have. This means that the solutions we get might not exactly
satisfy the correspondences in the sample set (which can be
later taken care by the hybrid RANSAC pipeline). Another
approach would be to drop some of the input data, instead
of dropping equations. For example, one could take 3 pairs
of point matches with depth and one pair without depth,
or with partial depth (only in one view). One approach to
formulate this would then be to parameterize the missing
depth as extra unknowns. We briefly explored this option
but applying [34] yielded solvers with elimination templates
of size 360→374 (14 solutions) and 716→744 (28 solutions),
which are too slow to be used in practice.

D. Limitation and Future Work

We discuss here some limitations of our affine modeling of
the monocular depth priors and the proposed pipeline, im-
provements of which could lead to interesting and promis-
ing future works.



First, while our affine correction of the monocular depth
priors is proven beneficial for estimating relative pose and
outperforms previous methods that only model the scale, the
affine modeling of depth maps is simple and limited with
only two parameters (scale and shift). In practice, we have
found that the estimated ϖ might not uniformally agree with
all pixels and their depth priors, but rather different groups
of regions/surfaces in the image can be better fitted with
different shift values. This is due to the fact that MDE mod-
els are better at inferring relative depth between pixels of
the same object/surface than pixels across different surfaces
due to the ambiguous scales among objects. We also ob-
served that the same depth map could result in a few differ-
ent groups of ϖ values when estimating relative pose with
different images (all with good estimated poses), depending
on the different groups of regions/surfaces that are aligned
by the inlier correspondences. Therefore, one interesting
future work direction would be to enhance the affine mod-
eling to more fine-grained region-based modeling, possibly
with the help of the latest advances in image segmentation.
At the same time, our method can also benefit from more
advanced monocular depth models with better accuracy on
outdoor images or inter-image consistencies as can be seen
from Tab. 8.

Second, while we are able to get good results by empiri-
cally setting εs to 1.0 in the experiments, a more mathemat-
ically sound way of balancing between the depth-induced
reprojection errors and Sampson error could be developed.
This can be especially beneficial when the depth priors are
less reliable (e.g. on outdoor images), and could utilize in-
formation such as uncertainty modeling of the depth priors
and inlier ratios of the different types of correspondences.

Third, our proposed pipeline is dependent on pixel corre-
spondences produced by off-the-shelf matchers, and there-
fore only limited part of the estimated depth priors are uti-
lized. It would be interesting to explore whether depth pri-
ors of other unmatched pixels could provide additional ge-
ometric constraints.

Lastly, a natural extension of our pipeline is to extend
our affine modeling to multi-view, possibly through bundle-
adjustment to solve multi-view problems like structure-
from-motion.



Figure 7. Additional visualizations on ETH3D [59] with shared-focal setting. Left: back-projected GT depth with relative pose found by
PoseLib-6pt [33] and translation rescaled to match scale with GT translation; Middle: back-projected depth priors from Marigold [32]
aligned using the output scale, shifts, relative pose, and focal length from our method; Right: Aligned GT depth with GT pose.

Figure 8. Additional visualizations on Stanford 2D-3D-S [2] image pairs with two-focal setting. Left: back-projected depth priors aligned
using the relative pose found by PoseLib-7pt [33] baseline; Right: back-projected depth priors aligned using the relative pose found by our
two-focal estimator. Both point clouds are aligned using the scale and shifts from our method, but focal lengths from each method, with
translation found by the point-based baseline is rescaled to match the length of translation found by our method. (Currently no GT depth
available for the sampled image pairs.)



Figure 9. Visualization of aligned point clouds on image pairs from ScanNet-1500[15] using: Left: the scale-only ablated baseline
(Sec. 5.3); Middle: our method (calibrated setting); Right: GT depth.
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