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Overview of this supplementary material:
• Section 1: Performance Analysis on KITTI Dataset
• Section 2: More Results and Discussion
• Section 3: Computational Analysis
• Section 4: Visualization

1. Performance Analysis on KITTI Dataset
We submitted our results to the test dataset onto KITTI’s
official evaluation server. As listed in Fig. 1 [4], Fig. 2 [3],
and Fig. 3 [3], ViKIENet and ViKIENet-R run at 22.7
and 15.0 FPS, respectively, on an NVIDIA GeForce RTX
3090. As of the CVPR submission deadline (Nov. 15th,
2024), we rank 1st on the KITTI car detection and ori-
entation estimation leaderboard and rank 2nd on the 3D
car detection leaderboard among officially published pa-
pers. We divide existing methods into two categories, with
and without Rotation and Transformation Equivariant Net-
works (RTEN) [14] as they have been shown to be effec-
tive but cumbersome. On the 3D object detection leader-
board, ViKIENet-R, VirConv-T [15], TSSTDet [7], and
TED [14] all utilize a similar RTEN. Among these models,
due to the highly efficient design of our VKI-based model
design, ViKIENet-R runs the fastest, even surpassing the
other models in the top-ten list that do not utilize this mech-
anism, while achieving equivalent accuracy as the state-of-
the-art model, VirConv-T [15]. As for VirConv-S, since it
uses additional training data, we did not consider it for fair
comparison. ViKIENet strikes a balance between speed and
performance. Compared to other top-ranked methods such
as 3ONet [6] (6.5 FPS on RTX 3090) and LoGoNet [11]
(10.69 FPS on A100), our ViKIENet demonstrates excel-
lent real-time performance.

2. More Results and Discussion
2.1. Results of Different Pre-trained Segmentation

Models on ViKIENet

We tested a few different segmentation models to study the
impact of semantic segmentation results on our model’s fi-
nal 3D detection results. As shown in Tab. 1, there is not
much difference among them. Therefore we can choose
a segmentation model that prioritizes in efficiency such
as BiSeNetV2 which can achieve up to 156 FPS on an
NVIDIA GeForce 1080Ti card [17]. We also visualized the
differences of the segmentation masks over the input im-
ages and observed that they only differ near the edge of the

Figure 1. Top 15 entries of the KITTI 3D car detection leaderboard
as of Nov. 20, 2024.

Figure 2. Top 10 entries of the KITTI 2D car detection leaderboard
as of Nov. 20, 2024.

instances but almost all of the pixels within the instances
are predicted correctly and thus our SKIS module is able
to identify and include most of the virtual points of the in-
stances, and we noticed that the inaccuracy of the final de-
tection results often come from the depth’s dimension hence
future work could be done to employ state-of-the-art depth
completion models.



Figure 3. Top 10 entries of the KITTI car orientation estimation
leaderboard as of Nov. 20, 2024.

Method Segmentation Model 3D AP (R40)
Easy Moderate Hard

ViKIENet

Mask-RCNN [5] 95.64 88.40 85.98
Bisenet V2 [17] 95.58 88.49 86.07
DeepLab V3 [1] 95.35 88.45 86.04

FCN [12] 95.34 88.43 86.06
LRASPP [9] 95.29 88.36 86.00

Table 1. Performance comparison of using different segmentation
models for ViKIENet on the KITTI validation set.

2.2. Discussion on Different Depth Completion Ap-
proaches for ViKIENet.

Following VirConv [15] and other virtual point based meth-
ods [14, 15], for a fair performance comparison with them,
we followed their convention and did not include the infer-
ence time of the depth completion model and used the same
pre-trained model, PENet [8], as them for this task. Addi-
tionally, our ViKIENet is compatible with different depth
completion approaches for a diverse range of use cases. We
used IP-Basic [10] for depth completion when working with
the JRDB dataset. Its performance is being compared with
PENet in Tab. 2. This fast depth completion model can run
at 90 Hz on an Intel Core i7-7700K processor [10]. These
results suggest that, for applications that focus on close-
range perception, for example, autonomous mobile robots
(AMRs) or vehicles with low-speed needs such as street
sweeper trucks or tour buses, ViKIENet can be deployed
with depth completion approaches with only small compu-
tational overhead, while achieving significantly higher de-
tection results compared to the baseline. RGB-D cameras
can also be used to work with ViKIENet for real-time ap-
plications.

Method RMSE MAE iRMSE iMAE
PENet [8] 730.08 210.55 2.17 0.94

IP-Basic [10] 1288.46 302.60 3.78 1.29

Table 2. Performance comparison between PENet [8] and IP-
Basic [17]

VIFF VIFF-R
Attention mechanism AP (R40) Attention mechanism AP (R40)

None 85.79 None 87.21
Unidirectional cross-attention: A to B 88.07 Unidirectional cross-attention: A to B 88.14
Unidirectional cross-attention: B to A 88.10 Unidirectional cross-attention: B to A 89.05

Bi-directional cross-attention 88.49 Bi-directional cross-attention 89.52

Table 3. Ablation study on the KITTI validation set. A to B refers
to VKI feature as Query. B to A refers to LiDAR feature as Query.

Figure 4. Noise suppressed and contour strengthened by VIRA in
feature map visualization.

Figure 5. 3D AP and speed trade-off by using different rotation
numbers.

2.3. More Qualitative and Quantitative Experi-
ments on VIFF and VIRA.

Fig. 4 illustrates that VIRA can utilize lidar points to em-
phasize the contour of actual objects, both (a) and (b) show
VIRA and VIFF can help to reduce boundary noise issues
by suppressing depth-inaccurate features, resulting in more
accurate bounding boxing predictions. To justify the ef-
fectiveness of the bi-directional (named after [13]) cross-
attention, we conduct ablation studies in Tab. 3, comparing
VIFF and VIFF-R with their unidirectional variants.



Figure 6. Upper bound of Nout and lower bounds of Nout com-
pared to Nin with k at 1, 3, 5, 7, 9

2.4. Discussion of ViKIENet-R

As introduced in the paper, ViKIENet-R utilizes VIFF-R
module for feature fusion. Inspired by the approach in
TED [14], we also included rotation-transformation equiv-
ariant features for our VKIs. The key difference between
VIFF-R and VIFF resides in replacing the self-attention
module with cross-attention across different rotational fea-
tures, enabling better fusion of multiple rotational fea-
tures. Fig. 5 illustrates the precision under different rotation
counts. We observe that ViKIENet-R achieves its highest
accuracy with a rotation number of 2 and 3, we chose 2 ro-
tations to maintain its high efficiency since it is much faster.
To further evaluate the performance of our ViKIENet-R in
terms of speed and GPU memory usage, we tested Voxel-
RCNN, VirConv-T, and ViKIENet-R on the KITTI valida-
tion set using an Nvidia RTX 3090 GPU, with the batch size
set to be 16. As shown in Tab. 4, ViKIENet-R achieves sig-
nificant improvements in both memory usage and inference
speed compared to VirConv-T [15].

Method Memory Usage FPS Device AP (R40)
Voxel-RCNN [2] 6.3G 24.3 RTX 3090 85.29
VirConv-T [15] 13.3G 9.9 RTX 3090 89.87

ViKIENet-R (Ours) 11.5G 15.0 RTX 3090 89.52

Table 4. Performance comparison with Voxel-RCNN [2] and
VirConv-T [15] on Nvidia RTX 3090.

3. Computational Analysis

Matrix multiplications over a large input dimension can
build up the FLOPs quickly, which can hinge a model’s in-
ference speed. With rotation employed for additional fea-
ture enrichment, albeit its general ability to further improve

Figure 7. Further reduction ration with the increase in number of
inputs

Number of Voxels (in millions)
ViKIENet Random Discard VirConv-T [15]

Input Layer 19.53 19.53 53.60
After SparseConv1 25.67 59.00 140.81
After SparseConv2 16.09 68.32 129.30
After SparseConv3 8.19 45.27 67.63

Growth Factor
Input Layer - - -

After SparseConv1 1.31 3.02 2.63
After SparseConv2 0.82 3.50 2.41
After SparseConv3 0.42 2.32 1.26

Table 5. Number of voxels before and after each sparse convolu-
tion layer, and growth factor compared across ViKIENet, random
discard and Virconv-T [15]

MAC ViKIENet Random Discard VirConv-T [15]
SubM0+SpConv1 Nin ∗ 36 ∗ 76 405.00 405.00 1111.40
SubM1+SpConv2 Nout1 ∗ 140 ∗ 576 2070.39 4757.89 11355.20
SubM2+SpConv3 Nout2 ∗ 368 ∗ 576 3410.07 14482.39 27408.13

SubM3 Nout3 ∗ 176 ∗ 576 829.88 4589.42 6856.46
Total - 6715.34 24234.66 46731.19

MAC Ratio - 0.14 0.52 1.00

Table 6. Performance on different distances and occlusion degrees.

the 3D detection accuracy, the benefits comes with a price
of increased time consumptions [7, 14, 15]. Our VKI-based
approach can significantly mitigate this issue.

To measure how many FLOPs can we save, we attempted
with several open-sourced FLOPs analyzing tools but we
were unable to apply them due to the customized sparse ten-
sor object [16] being used as inputs throughout our model.
Therefore we did our own calculations and obtained inter-
esting findings particularly in the sparse convolution stage
since the calculation is not trivial as compared to regular
dense convolutions.

Two types of sparse convolution have become popular
in recent years: sparse convolution (SparseConv) and sub-
manifold sparse convolution (SubMConv) [16]. They are



usually employed together with a sparse convolution layer
followed by several submanifold convolution layers s to en-
large receptive filed while maintaining sparsity. In sparse
convolution, it calculates if any part of the kernel covers an
active (non-zero) input site, which may increase the density
in the output matrix. In submanifold sparse convolution,
it only calculates when the center of the kernel covers an
active input site, which allows the output to have the same
sparsity with the input matrix, exactly the same when stride
is one and same size zero padding is applied.

According to the implementation of SparseConv, the
number of multiplication is approximately the same regard-
less of the distribution when the number of active sites in
the input are the same and when stride is one, when stride
is more than one it is more random. However, the num-
ber of outputs will differ when the input distributions are
different, which will then affect the number of multiplica-
tions in all of its subsequent submanifold sparse convolu-
tion, and other subsequent processing layers. The differ-
ence becomes more significant when rotation is applied.
Take Virconv [15] for example, there are about 12 SubM-
Conv layers and 3 SparseConv after the first SparseConv
layer. If using 2 additional rotation, it would have a total of
36 SubMConv and 9 SparseConv layers. Regarding to the
input distribution, the number of outputs of a sparse con-
volution is minimum when all the pixels or voxels gather
together closest to a square or cube shape and maximum
when each of them is scattered and no two pixels or voxels
are within one kernel’s range. In our case of VKIs, since
they are dense virtual points obtained for each instance, the
distribution will look like several clusters of voxels. There-
fore its number of outputs will be much lower than same
amount of input voxels but evenly distributed in the space,
which means even though our number of input voxels is
close one third (36.4% to be exact) of those using all virtual
points as [15] right before entering the 3D backbone stage,
the actual performance speedup in terms of the number of
matrix multiplications will be even lower than one third.

Taking a simple example of 2 non-zero elements that are
not near the edge as input in a 1D sparse convolution of ker-
nel size 3 and stride 1, when they are adjacent to each other,
the number of output non-zero elements, Nout, will be 4;
when they are at least 2 spaces apart, Nout will be 6; and
when they are one space apart, Nout will be 5. Formally,
in 3D sparse convolution, the lower bound of Nout, termed
Lout can be approximated at

(
3
√
Nin − k + p

s
+ 1

)3

, (1)

and the upper bound of Nout, termed Uout can be ap-

proximated at

Nin ×
(
1− k + p

s
+ 1

)3

. (2)

When stride is 1 and kernel size is 3, if the cube is near the
edge, Lout will be even smaller, assuming the cube is not
close to the edge for the purpose of getting a tighter bound,
Lout can be approximated at(

3
√
Nin + 2

)3

(3)

which is equal to

Nin + 6N
2
3

in + 12N
1
3

in + 8 (4)

and Uout can be approximated at 27Nin, which is quite large
and hence stride 1 is not often used.

When kernel size is 3 and stride is 2, and assuming equal
probabilities of the voxel being at odd or even position in its
coordinates, i.e. each combination of odd or even position
in the x, y, and z axis has 1/8 of probability. Uout can be
approximated at

Nin ×
8 + 4× C1

3 + 2× C2
3 + 1

8
, (5)

which is equal to 3.375Nin. We define growth factor as the
number of output voxels divded by the number of input vox-
els at the first input layer of the 3D backbone. As shown in
table 13, after the first Sparse convolution layer, the ran-
dom discard method grows 3.02 times of its input number
of voxels, close to the 3.375 as our hypothesis. VirConv-
T [15], which has more voxels but with a similar distribu-
tion as the random discard method, grows 2.63 times com-
pared to its input voxels while our method only grows 1.31
times. After the second and third sparse convolution layer,
though less drastically, the other two methods still increased
the amount of voxels compared to their corresponding input
voxels while ours reduced more than half of its input voxels.

Similar to our previous approximation, assuming equal
probabilities of even and odd size of edge and equal prob-
abilities of even and odd position in each axis, Lout can be
approximated at (

3
√
Nin

2
+ 1

)3

(6)

or
0.125Nin + 0.75N

2
3

in + 1.5N
1
3

in + 1. (7)

Conveniently, if there are k instances, assuming equal
sizes, Nout can be approximated at

k

 3

√
Nin
k

2
+ 1

3

(8)



Figure 8. Visualization of detection results on KITTI validation set. Fig. 8 (a) shows the detection results of Voxel-RCNN [2], while Fig. 8
(b) presents the detection results of our ViKIENet.

Practically, k has an average of 5 in the KITTI dataset.
As shown in Fig. 6, Lout and Nout with k being at dif-

ferent values are significantly lower than Uout.
Suppose the additional reduction ratio r is defined as

Lout / Uout, at k=1, max of r can be approximated as

1

27

(
1 + 6x− 1

3 + 12x− 2
3 +

8

x

)
(9)

Similarly we can approximate when k is not 1. As shown
in Fig. 7, theoretically r is superlinear. However in reality
our number of voxels are in the magnitude of 102 or 103,
thus the max additional reduction ratio is approximately be-
tween 0.1 to 0.05.

Interestingly, when Nin is 132 (if voxel size is 0.05m of
each edge, this is approximately a cube of 0.25m as its edge,
which is similar to the size of a small document box) Lout

is 1/10 of Uout meaning up to 3.6% compared to worst case
distribution in addition to the 36.4% reduction in number
of input voxels we already have at the beginning of the 3D
backbone stage, and when Nin is 1,000, Lout is 0.064 of
Uout, meaning up to 2.3% of worst case distribution. Ob-
viously, it is unlikely for that distribution to happen but it
should lean towards Lout rather than Uout in the beginning
stages, and then as the strides increases, the voxels will
become closer to each other and thus lean more towards
Uout. Note that channel size will also increases in the later
stages, meaning increased MAC (Multiply-Accumulate Op-
erations) and FLOPs (Floating Point Operations). To test
our hypothesis, we applied random voxel discard on the
voxels generated from the entire virtual point cloud with
a discard rate at 0.36 to match the number of input vox-
els with our VKIs, averaged over 10 times and over all the
3.7k training samples from the KITTI dataset and obtained
the results in Table 14. Though ViKieNet has about 1/3 of

the number of input voxels compared to VirConv-T [15],
we only need 14% of its MAC in the 3D backbone stage.
We also calculated the FLOPs taking account into the batch
norm layers and the percentage remains the same. The sig-
nificance of this calculation is that the more rotation, reflec-
tion or other transformation is added, the more advantage
we will have compared to VirConv-T [15] or other models
with transformation-equivariant mechanisms over the entire
virtual point clouds. To confirm this conclusion, we tested
the inference time with rotation numbers from 1 to 4 com-
paring ViKIENet and VirConv-T [15], results are shown in
Tab. 7 below. We only need 20, 23, 20ms for each addi-
tional rotation while VirConv-T need 32, 30, and 40 ms for
each additional rotation.

Number of Rotations ViKIENet-R (Ours) VirConv-T [15]
1 46 ms 78 ms
2 66 ms 110 ms
3 89 ms 140 ms
4 109 ms 180 ms

Table 7. Inference time (ms) over 1, 2, 3, and 4 rotations on a
single Nvidia RTX 3090

Another interesting finding is that during the hashing
process for output locations, when Nin is the same but dis-
tribution is less scattered, the reduced number of active out-
puts equals the increased number of addition required, be-
cause we need to aggregate the values on the same output
location if there are more than one, which means if there
are p fewer output locations, there is a slight time reduc-
tion of p∆t where ∆t = ht − at, ht is the time of building
hash table for each output location, and at is the number
of addition, building hash table has to be run sequentially
while addition can be run in parallel and addition is gener-



Figure 9. The virtual points and LiDAR points are shown in black
and blue, respectively. The image below shows a vehicle with
noise caused by inaccurate depth completion.

ally very fast hence though very small, ∆t should be greater
than zero.

4. Visualization
Fig. 8 compares results between our ViKIENet and the
baseline model (Voxel-RCNN) [2] and demonstrates that
since our model contains semantic information and denser
geometric information, it can detect occluded targets which
tend to be missed. Fig. 9 gives an illustration of the noise
generated with the VKIs that we have been discussing
throughout the paper. While VKIs effectively compen-
sate for missing regions in the point cloud, they exhibit
two main drawbacks which are also common among other
virtual-points-based methods: excessive density and noise
caused by inaccurate depth completion. Fig. 10 presents
an example which shows the effectiveness of our proposed
ViKIENet. In Fig. 10 (a), the object can be easily identi-
fied from the image, whereas in Fig. 10 (b), it is mistakenly
detected by Voxel-RCNN [2]. Nonetheless, in Fig. 10 (c)
our model successfully recognized that it is not a vehicle,
because our VKIs include semantic information, ViKIENet
is able to distinguish between similarly shaped objects from
its texture and color pattern, enabling higher precision in 3D
object detection results.
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